For running the example dataset, only the start and end frame indices index_frame_start
and index_frame_end
as well as the desired output location folder_save
need to be specified.
In the calibration step the anatomy of the animal is learned, based on manually annotated labels. The most important parameters are:
# the body weight of the animal in gram
body_weight = 72.0
# the number of frames to skip between time points in the sequence used for learning the animal's anatomy
dFrames_calib = 200
# the start and end frame index of the sequence used for learning the animal's anatomy
index_frames_calib = list([[6900, 44300],])
Thus, dFrames_calib=50
and index_frames_calib=list([[0,100],[1000,1100]])
will result in learning the anatomy using frames with indices 0, 50, 100, 1000, 1050 and 1100. These frames need to be manually annotated in labels_manual.npz
.
In the initialization step the animal's pose in the first time point of the sequence, which sould be reconstructed, is learned via gradient descent optimization.
In the final step the model parameters are learned, i.e. poses are reconstructed. The most important parameters are:
# determines which constraints will be enforced when poses are reconstructed (values: 1 - 4)
# 1: no constraints (deterministic model)
# 2: only anatomical constraints (deterministic model)
# 3: only temporal constraints (probabilistic model)
# 4: anatomical and temporal constraints (probabilistic model)
mode = 4
# the number of frames to skip between time points in the sequence, which should be reconstructed
dt = 5
The model defining the skeleton graph of the animal in the format:
dict(
# bone lengths (legacy: can just be filled with zeros) # LEGACY
'bone_lengths': np.ndarray, shape=(nBones,), dtype('float64'), # LEGACY
# defines to which joint a marker is connected to (i.e. each element is a respective joint index)
'joint_marker_index': np.ndarray, shape=(nMarkers,), dtype('int64'),
# ordered list of marker names
'joint_marker_order': list, shape=(nMarkers,), type('str'),
# relative marker locations (legacy: can just be filled with zeros) # LEGACY
'joint_marker_vectors': np.ndarray, shape=(nMarkers, 3,), dtype('float64'), # LEGACY
# ordered list of joint names
'joint_order': list, shape=(nJoints,), type('str'),
# local bone coordinate systems in rest pose (should be consistent with 'skeleton_vertices')
'skeleton_coords': np.ndarray, shape=(nBones, 3, 3,), dtype('float64'),
# bone indices (legacy: can just be filled with zeros) # LEGACY
'skeleton_coords_index': np.ndarray, shape=(nBones,), dtype('int64'), # LEGACY
# defines the bones of the skeleton graph (i.e. each entry contains indices of two joints, which form a bone when connected)
'skeleton_edges': np.ndarray, shape=(nBones, 2,), dtype('int64'),
# absolute joint positions in rest pose (should be consistent with 'skeleton_coords'; resulting bone lengths should all be equal to one)
'skeleton_vertices': np.ndarray, shape=(nJoints, 3,), dtype('float64'),
# indicates if a bone is affected by a rotation of a preceding bone in the skeleton graph
'skeleton_vertices_links': np.ndarray, shape=(nBones, nBones,), dtype('bool'),
# defines triangles of a surface mesh (i.e. each triagle is defined by three vertex indices) (legacy: can just be an empty array) # LEGACY
'surface_triangles': np.ndarray, shape=(nTriangles, 3,), dtype('int32'), # LEGACY
# defines absolute locations of vertices of a surface mesh (legacy: can just be an empty array) # LEGACY
'surface_vertices': np.ndarray, shape=(nVertices, 3,), dtype('float64'), # LEGACY
# defines weights of surface vertices such that they can be adjusted according to linear blend skinning (legacy: can just be an empty array) # LEGACY
'surface_vertices_weights': np.ndarray, shape=(nVertices, nJoints,), dtype('float64'), # LEGACY
)
Any additional keys of the dictionary are not mandatory and originate from the development phase of the method.
In the default model, joint names are: ['joint_ankle_left', 'joint_ankle_right', 'joint_elbow_left', 'joint_elbow_right', 'joint_finger_left_002', 'joint_finger_right_002', 'joint_head_001', 'joint_hip_left', 'joint_hip_right', 'joint_knee_left', 'joint_knee_right', 'joint_paw_hind_left', 'joint_paw_hind_right', 'joint_shoulder_left', 'joint_shoulder_right', 'joint_spine_001', 'joint_spine_002', 'joint_spine_003', 'joint_spine_004', 'joint_spine_005', 'joint_tail_001', 'joint_tail_002', 'joint_tail_003', 'joint_tail_004', 'joint_tail_005', 'joint_toe_left_002', 'joint_toe_right_002', 'joint_wrist_left', 'joint_wrist_right']
and marker names are: ['marker_ankle_left_start', 'marker_ankle_right_start', 'marker_elbow_left_start', 'marker_elbow_right_start', 'marker_finger_left_001_start', 'marker_finger_left_002_start', 'marker_finger_left_003_start', 'marker_finger_right_001_start', 'marker_finger_right_002_start', 'marker_finger_right_003_start', 'marker_head_001_start', 'marker_head_002_start', 'marker_head_003_start', 'marker_hip_left_start', 'marker_hip_right_start', 'marker_knee_left_start', 'marker_knee_right_start', 'marker_paw_front_left_start', 'marker_paw_front_right_start', 'marker_paw_hind_left_start', 'marker_paw_hind_right_start', 'marker_shoulder_left_start', 'marker_shoulder_right_start', 'marker_side_left_start', 'marker_side_right_start', 'marker_spine_001_start', 'marker_spine_002_start', 'marker_spine_003_start', 'marker_spine_004_start', 'marker_spine_005_start', 'marker_spine_006_start', 'marker_tail_001_start', 'marker_tail_002_start', 'marker_tail_003_start', 'marker_tail_004_start', 'marker_tail_005_start', 'marker_tail_006_start', 'marker_toe_left_001_start', 'marker_toe_left_002_start', 'marker_toe_left_003_start', 'marker_toe_right_001_start', 'marker_toe_right_002_start', 'marker_toe_right_003_start']
.
Currently, some joint and marker names are hard coded. Therefore changing these names is not recommended (e.g. 'joint_hip_left', 'joint_hip_right', 'joint_shoulder_left', 'joint_shoulder_left' are hard coded; see functions get_coord0
and get_skeleton_coords0
in anatomy.py
).
The multicalibration in the format:
dict(
# focal lengths and principal point locations for each camera (intrinsic parameters)
'A_fit': np.ndarray, shape=(nCameras, 4,), dtype('float64'),
# rotation matrix for each camera (extrinsic parameters)
'RX1_fit': np.ndarray, shape=(nCameras, 3, 3,), dtype('float64'),
# distortion coefficients for each camera (intrinsic parameters)
'k_fit': np.ndarray, shape=(nCameras, 5,), dtype('float64'),
# total number of calibrated cameras
'nCameras': type('int'),
# Rodrigues vectors corresponding to 'RX1_fit' for each camera (extrinsic parameters)
'rX1_fit': np.ndarray, shape=(nCameras, 3,), dtype('float64'),
# translation vector for each camera (extrinsic parameters)
'tX1_fit': np.ndarray, shape=(nCameras, 3,), dtype('float64'),
)
Any additional keys of the dictionary are not mandatory and originate from the development phase of the method.
A multi-camera calibration file in this format can be produced with our calibration software calibcam, using ChArUco boards (use the multicalibration-v1.npy
output file).
Multicalibrations produced by calibcam are aligned based on the camera 1 position and direction. origin_coord determines the coordinate system of the final result, relative to the coordinate system of the camera calibration. This usually has the arena center as origin and the z-axis pointing upwards. The format is:
dict(
# origin of the arena coordinate system in the coordinate system of the multicalibration
'origin': np.ndarray, shape=(3,), dtype('float64'),
# orientation of arena coordinate system in the coordinate system of the multicalibration (i.e. [lateral1, lateral2, up])
'coord': np.ndarray, shape=(3, 3,), dtype('float64'),
)
Thus, origin_coord:coord * x_arena + origin_coord:origin = x_camera
.
Manual labels of surface markers on the videography data. Content is a dictionary with integer frame indices as keys ([frameidx]
below). Each value is another dictionary with the label names as keys ([label name]
below). The format is:
dict(
[frameidx]: dict(
# positions of labels in 2D image
[label name]: np.ndarray, shape=(nCameras, 2), dtype('int64'),
...
)
...
)
In the default model, label names are: ['spot_ankle_left', 'spot_ankle_right', 'spot_elbow_left', 'spot_elbow_right', 'spot_finger_left_001', 'spot_finger_left_002', 'spot_finger_left_003', 'spot_finger_right_001', 'spot_finger_right_002', 'spot_finger_right_003', 'spot_head_001', 'spot_head_002', 'spot_head_003', 'spot_hip_left', 'spot_hip_right', 'spot_knee_left', 'spot_knee_right', 'spot_paw_front_left', 'spot_paw_front_right', 'spot_paw_hind_left', 'spot_paw_hind_right', 'spot_shoulder_left', 'spot_shoulder_right', 'spot_side_left', 'spot_side_right', 'spot_spine_001', 'spot_spine_002', 'spot_spine_003', 'spot_spine_004', 'spot_spine_005', 'spot_spine_006', 'spot_tail_001', 'spot_tail_002', 'spot_tail_003', 'spot_tail_004', 'spot_tail_005', 'spot_tail_006', 'spot_toe_left_001', 'spot_toe_left_002', 'spot_toe_left_003', 'spot_toe_right_001', 'spot_toe_right_002', 'spot_toe_right_003']
.
To differentiate manually annotated labels from reconstructed marker locations, these names are later on modified internally (see joint_marker_order
in model.npy
).
Currently, some label names are hard coded. Therefore changing these names is not recommended (see function initialize_x
in calibration.py
).
The hard coded label names are: 'spot_head_002', 'spot_head_003'. Labels with the strings 'spine' and 'tail' in their names are used for roughly aligning the 3D orientation of the animal before learning its anatomy.
Automatically detected labels of markers on the videography data in the format:
dict(
# original file location (legacy: can just be an empty string) # LEGACY
'file_save', type('str') # LEGACY
# list of frame indices that the frames in 'labels_all' correspond to
'frame_list': np.ndarray, shape=(nFrames,), dtype('int64'),
# positions of markers in 2D image plus confidence value from DLC
'labels_all': np.ndarray, shape=(nFrames, nCameras, nMarkers, 3,), dtype('float64'),
)
Any additional keys of the dictionary are not mandatory and originate from the development phase of the method.