-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDeepBeliefNetwork.py
38 lines (24 loc) · 950 Bytes
/
DeepBeliefNetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import NeuralNetwork as nn
import RestrictedBoltzmannMachine as rbm
class DeepBeliefNetwork(object):
"""docstring for DeepBeliefNetwork"""
def __init__(self, x, opts):
super(DeepBeliefNetwork, self).__init__()
n = x.shape[1]
self.sizes = np.append(n, self.sizes)
for u in range(len(self.sizes - 1)):
self.rbm[u] = rbm.RestrictedBoltzmannMachine(self.sizes[u:u + 1], opts)
def train(self, x, opts):
n = len(self.rbm)
self.rbm[0] = rbm.train(self.rbm[0], x, opts)
for i in range(1,n):
x = rbm.up(self.rbm[i - 1], x)
self.rbm[i] = rbm.train(self.rbm[i], x, opts)
def unfold_to_neural_network(self, output_architecture = None):
if output_architecture is not None:
architecture = self.sizes.append(output_architecture)
else:
architecture = self.sizes
neural_network = nn.NeuralNetwork(architecture)
for i in range(len(self.rbm)):
neural_network.W[i] = self.rbm[i].c.append(self.rbm[i].W)