-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_simplest.py
106 lines (80 loc) · 4.17 KB
/
train_simplest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# [main]
import os
import joblib
import time
# [snorkel]
from snorkel.labeling.model import LabelModel
from snorkel.labeling import PandasLFApplier, LFAnalysis, filter_unlabeled_dataframe
from snorkel.utils import probs_to_preds
# [local]
from mnpolarity.labeling_functions import get_all_lfs
from mnpolarity.config import config
from mnpolarity.utils import read_all_train_data
if __name__ == "__main__":
st = time.time()
output_dir = os.path.join(
config["package_dir"], "output", "0.0")
print("--------------------- -1. create LFS ---------------------")
lfs = get_all_lfs()
print("--------------------- 0. Read Data ---------------------")
df = read_all_train_data(config['data_dir'], include_twitter_dump=False)
print(f"Data Loaded df.shape={df.shape}")
print("--------------------- 1. Snorkeling ---------------------")
os.makedirs(output_dir, exist_ok=True)
applier = PandasLFApplier(lfs=lfs)
L_train = applier.apply(df=df)
print(LFAnalysis(L=L_train, lfs=lfs).lf_summary())
print("[done] pandas lf applier")
# snorkeler = MajorityLabelVoter()
snorkeler = LabelModel(cardinality=3, verbose=True)
snorkeler.fit(L_train=L_train, n_epochs=500, log_freq=100, seed=123)
snorkeler.save(os.path.join(output_dir, "snorkel_label_model.pkl"))
preds_train = snorkeler.predict(L=L_train)
probs_train = snorkeler.predict_proba(L=L_train)
df_train_filtered, probs_train_filtered = filter_unlabeled_dataframe(
X=df, y=probs_train, L=L_train
)
preds_train_filtered = probs_to_preds(probs=probs_train_filtered)
df_train_filtered["label"] = preds_train_filtered
df_train_filtered.to_csv(os.path.join(output_dir, "pseudo_label.csv"))
print(f"df_train_filtered\n{df_train_filtered}")
print("--------------------- 2. Vectorization ---------------------")
from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer(ngram_range=(1, 3), max_features=3000)
vectorizer.fit(df_train_filtered.tweet.str.lower().tolist())
joblib.dump(vectorizer, os.path.join(output_dir, "vectorizer.pkl"))
X_train = vectorizer.transform(df.tweet.str.lower().tolist())
print("X_train.shape", X_train.shape)
print("--------------------- 3. SKLearn Training ---------------------")
from sklearn.linear_model import LogisticRegression
sklearn_model = LogisticRegression(C=1e3, solver="liblinear")
sklearn_model.fit(X=X_train, y=preds_train)
joblib.dump(sklearn_model, os.path.join(output_dir, "sklearn_model.pkl"))
y_pred = sklearn_model.predict(X_train)
print("--------------------- 4. Evaluation ---------------------")
from sklearn.metrics import classification_report
print(classification_report(preds_train, y_pred))
print("--------------------- 5. Testing ---------------------")
# link to tweet
text = [
"эд нарыг үзэн ядаж байна",
# https://twitter.com/tsbat_IT/status/937989630472761344
"#Утаа г үзэн ядаж байна..",
# https://twitter.com/gt_log/status/1338014887407091713
"Өө тэнэг сда вэ. Орлого арав дахин өсгөж бхад хариуцлага ярих хэцүү шд гшш",
# https://twitter.com/hariad_uyanga/status/1253729084858761216
"Чи ямар тэнэг сда вэ. Одоо чамтай - чиний миний санал зөв гэж би маргах уу",
"Shaa shaa T1 sda", # https://twitter.com/Orchidz11/status/1315561414883500032
# https://twitter.com/enzia3/status/1396662686042238981
"Гоё сайхан үгс яахав ээ. Мөрийн хөтөлбөр уншмаар байна?"
]
vectors = vectorizer.transform([t.lower() for t in text])
probs = sklearn_model.predict_proba(vectors)
preds = probs.argmax(-1)
for i, t in enumerate(text):
pred = "NEGATIVE" if preds[i] == 1 else "ABSTRAIN"
prob = probs[i]
print(f"{t} => {pred} ({round(prob[preds[i]], 3)})")
print("------------------------------------------")
print(f"done in {time.time() - st: .1f} sec")
print("------------------------------------------")