-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrobot.py
237 lines (202 loc) · 8.4 KB
/
robot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import time
import math
from pybricks.hubs import EV3Brick
from pybricks.ev3devices import (Motor, TouchSensor, ColorSensor,
InfraredSensor, UltrasonicSensor, GyroSensor)
from pybricks.parameters import Port, Stop, Direction, Button, Color
from pybricks.tools import wait, StopWatch, DataLog
from pybricks.robotics import DriveBase
from pybricks.media.ev3dev import SoundFile, ImageFile
SHARPNESS = 3
SPEED = 100
WHEEL_CIRCUMFERENCE = 180
TURN_SPEED = 30
class Robot():
def __init__(self):
self.ev3 = EV3Brick()
self.left_wheel = Motor(Port.B)
self.right_wheel = Motor(Port.C)
self.left_cs = ColorSensor(Port.S2)
self.right_cs = ColorSensor(Port.S3)
self.tank = DriveBase(self.left_wheel, self.right_wheel, 52, 110)
self.gyro = GyroSensor(Port.S1)
self.forklift = Motor(Port.D)
self.back_forklift = Motor(Port.A)
self.left_cs_thresh, self.right_cs_thresh = self.read_calibrate()
print('Color sensor thresholds are left: {} right: {}'.format(
self.left_cs_thresh, self.right_cs_thresh))
self.ultra = UltrasonicSensor(Port.S4)
def follow_line(self, distance, speed=100, sharpness_color=0.4):
''' Follows the line for a certain distance
Args:
distance: the amount of millilmeters the robot should travel
'''
self.tank.reset()
while self.tank.distance() < distance:
subtract = self.left_cs.reflection() - self.right_cs.reflection()
multiply = subtract * sharpness_color
self.tank.drive(speed, multiply)
self.brake()
def read_calibrate(self):
file_handler = open("Calibration.txt", "r") # reads the value
left_value = int(file_handler.readline())
right_value = int(file_handler.readline())
return left_value, right_value
def brake(self):
''' brakes the robot
'''
# The next call sometimes fails on one motor.
#self.tank.stop(Stop.BRAKE)
# So trying the next approach instead.
self.tank.stop(Stop.BRAKE)
self.left_wheel.brake()
self.right_wheel.brake()
def gyro_straight(self, target, speed=SPEED):
''' Goes forward until it reaches black trying to keep gyro angle straight.
Args:
target: The amount of going forward in
'''
while not self.stop_on_black():
subtract = self.gyro.angle() - target
multiply = subtract * (SHARPNESS * -1)
self.tank.drive(speed, multiply)
#print(self.gyro.angle())
self.brake()
def gyro_straight_distance(self, distance, target_angle, speed=100, sharpness=SHARPNESS):
''' Goes forward for a certain distance trying to keep gyro angle straight.
Args:
distance: how much millimeters the robot should travel
'''
self.tank.settings(200, 100, 30, 30)
self.tank.reset()
while abs(self.tank.distance()) < distance:
subtract = self.gyro.angle() - target_angle
multiply = subtract * (sharpness * -1)
self.tank.drive(speed, multiply)
# print(self.gyro.angle())
self.brake()
def arm_movement(self, speed=200, millies=0, is_back=False, wait=True):
''' Makes the robot arm go up/down for a certain amount of millimeters
Args:
millies: the amount of millimeters the arm goes up/down
speed: the amount of speed the arm travels with
'''
f = self.forklift
degrees = millies * 10
if is_back:
f = self.back_forklift
degrees *= -1
f.run_angle(speed, degrees, wait=wait)
self.brake()
def gyro_angle(self, angle, speed=150):
''' Turns to desired angle
Args:
angle: the angle you want the robot to turn
'''
self.brake()
big = angle + 2
small = angle - 2
self.tank.settings(speed, speed, speed, speed)
print('Current angle= {} target= {}'.format(self.gyro.angle, angle))
self.tank.turn(angle - self.gyro.angle())
self.brake()
# you need to brake here so that the motor can run
while self.gyro.angle() <= small or self.gyro.angle() >= big:
while self.gyro.angle() <= small or self.gyro.angle() >= big:
if self.gyro.angle() <= small:
self.left_wheel.run(TURN_SPEED)
self.right_wheel.run(TURN_SPEED * -1)
else:
self.left_wheel.run(TURN_SPEED * -1)
self.right_wheel.run(TURN_SPEED)
self.brake()
time.sleep(0.4)
self.brake()
print('gyro_angle end: ' + str(self.gyro.angle()))
def stop_on_black(self, ignore_left=False, ignore_right=False):
''' Used so the robot can identify black
'''
if (self.left_cs.reflection() <= self.left_cs_thresh or ignore_left) and (
self.right_cs.reflection() <= self.right_cs_thresh or ignore_right):
self.brake()
return True
else:
return False
def perpendicular_line(self, line_distance):
''' The robot goes to an intersection of lines to create a reference point
Args:
line_distance: the distance of your end-point
on the line from the intersection of the two lines
'''
if line_distance >= 0:
turn = 85
else:
turn = -85
self.tank.settings(200, 100, 100, 100)
self.tank.turn(turn)
self.tank.straight(abs(line_distance))
self.tank.turn(turn * -1)
while not self.stop_on_black(left_cs, right_cs):
self.tank.drive(100, 0)
self.brake()
def steering(self, speed, sharpness, distance):
''' Makes the robot able to turn and go forward
Args:
speed: the speed the robot should travel with
sharpness: how sharp the robot should turn
distance: how far the robot should go
'''
self.tank.reset()
big = distance
small = -1 * distance
while self.tank.distance() >= small and self.tank.distance() <= big:
self.tank.drive(speed, sharpness)
self.brake()
def steering_angle(self, speed, sharpness, angle):
''' Steers the robot forward with `speed` and `sharpness` until a certain angle
Preconditions:
sharpness: should always be positive
Args:
speed: the speed of the steering
sharpness: the sharpness or urgency
angle: the angle the robot is aiming to stop at
'''
print("Beginning of steering_angle " + str(self.gyro.angle()))
big = angle + 1
small = angle - 1
temp_sharp = sharpness
if self.gyro.angle() > angle: # Should turn left
temp_sharp = sharpness * -1
while self.gyro.angle() <= small or self.gyro.angle() >= big:
if self.gyro.angle() >= big:
self.tank.drive(speed, temp_sharp)
elif self.gyro.angle() <= small:
self.tank.drive(speed * -1, temp_sharp * -1)
elif self.gyro.angle() < angle: # Should turn right
while self.gyro.angle() <= small or self.gyro.angle() >= big:
if self.gyro.angle() <= small:
self.tank.drive(speed, temp_sharp)
elif self.gyro.angle() >= big:
self.tank.drive(speed * -1, temp_sharp * -1)
self.brake()
time.sleep(0.3)
print("End of steering_angle " + str(self.gyro.angle()))
def straight_distance(self, distance, speed=200):
''' Goes straight for a certain distance
Args:
speed: the speed of the robot
distance: the distance the robot should go
straight
'''
self.tank.reset()
if distance < 0:
speed = speed * -1
while abs(self.tank.distance()) < abs(distance):
self.tank.drive(speed, 0)
self.brake()
def straight_to_black(self, speed=150, ignore_left=False, ignore_right=False):
''' Goes straight until it reaches black
'''
while not self.stop_on_black(ignore_left, ignore_right):
self.tank.drive(speed, 0)
self.brake()