forked from AllenDowney/ThinkPython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
letters.py
278 lines (220 loc) · 5.05 KB
/
letters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
"""This module contains code from
Think Python by Allen B. Downey
http://thinkpython.com
Copyright 2012 Allen B. Downey
License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html
"""
from swampy.TurtleWorld import *
from polygon import circle, arc
# LEVEL 0 PRIMITIVES are provided by World.py.
# They include fd, bk, lt, rt, pu and pd
# LEVEL 1 PRIMITIVES are simple combinations of Level 0 primitives.
# They have no pre- or post-conditions.
def fdlt(t, n, angle=90):
"""forward and left"""
fd(t, n)
lt(t, angle)
def fdbk(t, n):
"""forward and back, ending at the original position"""
fd(t, n)
bk(t, n)
def skip(t, n):
"""lift the pen and move"""
pu(t)
fd(t, n)
pd(t)
def stump(t, n, angle=90):
"""make a vertical line and leave the turtle at the top, facing right"""
lt(t)
fd(t, n)
rt(t, angle)
def hollow(t, n):
"""move the turtle vertically and leave it at the top, facing right"""
lt(t)
skip(t, n)
rt(t)
# LEVEL 2 PRIMITIVES use primitives from Levels 0 and 1
# to draw posts (vertical elements) and beams (horizontal elements)
# Level 2 primitives ALWAYS return the turtle to the original
# location and direction.
def post(t, n):
"""make a vertical line and return to the original position"""
lt(t)
fdbk(t, n)
rt(t)
def beam(t, n, height):
"""make a horizontal line at the given height and return."""
hollow(t, n*height)
fdbk(t, n)
hollow(t, -n*height)
def hangman(t, n, height):
"""make a vertical line to the given height and a horizontal line
at the given height and then return.
This is efficient to implement, and turns out to be useful, but
it's not so semantically clean."""
stump(t, n * height)
fdbk(t, n)
lt(t)
bk(t, n*height)
rt(t)
def diagonal(t, x, y):
"""make a diagonal line to the given x, y offsets and return"""
from math import atan2, sqrt, pi
angle = atan2(y, x) * 180 / pi
dist = sqrt(x**2 + y**2)
lt(t, angle)
fdbk(t, dist)
rt(t, angle)
def vshape(t, n, height):
diagonal(t, -n/2, height*n)
diagonal(t, n/2, height*n)
def bump(t, n, height):
"""make a bump with radius n at height*n
"""
stump(t, n*height)
arc(t, n/2.0, 180)
lt(t)
fdlt(t, n*height+n)
"""
The letter-drawing functions all have the precondition
that the turtle is in the lower-left corner of the letter,
and postcondition that the turtle is in the lower-right
corner, facing in the direction it started in.
They all take a turtle as the first argument and a size (n)
as the second. Most letters are (n) units wide and (2n) units
high.
"""
def draw_a(t, n):
diagonal(t, n/2, 2*n)
beam(t, n, 1)
skip(t, n)
diagonal(t, -n/2, 2*n)
def draw_b(t, n):
bump(t, n, 1)
bump(t, n, 0)
skip(t, n/2)
def draw_c(t, n):
hangman(t, n, 2)
fd(t, n)
def draw_d(t, n):
bump(t, 2*n, 0)
skip(t, n)
def draw_ef(t, n):
hangman(t, n, 2)
hangman(t, n, 1)
def draw_e(t, n):
draw_ef(t, n)
fd(t, n)
def draw_f(t, n):
draw_ef(t, n)
skip(t, n)
def draw_g(t, n):
hangman(t, n, 2)
fd(t, n/2)
beam(t, n/2, 2)
fd(t, n/2)
post(t, n)
def draw_h(t, n):
post(t, 2*n)
hangman(t, n, 1)
skip(t, n)
post(t, 2*n)
def draw_i(t, n):
beam(t, n, 2)
fd(t, n/2)
post(t, 2*n)
fd(t, n/2)
def draw_j(t, n):
beam(t, n, 2)
arc(t, n/2, 90)
fd(t, 3*n/2)
skip(t, -2*n)
rt(t)
skip(t, n/2)
def draw_k(t, n):
post(t, 2*n)
stump(t, n, 180)
vshape(t, 2*n, 0.5)
fdlt(t, n)
skip(t, n)
def draw_l(t, n):
post(t, 2*n)
fd(t, n)
def draw_n(t, n):
post(t, 2*n)
skip(t, n)
diagonal(t, -n, 2*n)
post(t, 2*n)
def draw_m(t, n):
post(t, 2*n)
draw_v(t, n)
post(t, 2*n)
def draw_o(t, n):
skip(t, n)
circle(t, n)
skip(t, n)
def draw_p(t, n):
bump(t, n, 1)
skip(t, n/2)
def draw_q(t, n):
draw_o(t, n)
diagonal(t, -n/2, n)
def draw_r(t, n):
draw_p(t, n)
diagonal(t, -n/2, n)
def draw_s(t, n):
fd(t, n/2)
arc(t, n/2, 180)
arc(t, n/2, -180)
fdlt(t, n/2, -90)
skip(t, 2*n)
lt(t)
def draw_t(t, n):
beam(t, n, 2)
skip(t, n/2)
post(t, 2*n)
skip(t, n/2)
def draw_u(t, n):
post(t, 2*n)
fd(t, n)
post(t, 2*n)
def draw_v(t, n):
skip(t, n/2)
vshape(t, n, 2)
skip(t, n/2)
def draw_w(t, n):
draw_v(t, n)
draw_v(t, n)
def draw_x(t, n):
diagonal(t, n, 2*n)
skip(t, n)
diagonal(t, -n, 2*n)
def draw_v(t, n):
skip(t, n/2)
diagonal(t, -n/2, 2*n)
diagonal(t, n/2, 2*n)
skip(t, n/2)
def draw_y(t, n):
skip(t, n/2)
stump(t, n)
vshape(t, n, 1)
rt(t)
fdlt(t, n)
skip(t, n/2)
def draw_z(t, n):
beam(t, n, 2)
diagonal(t, n, 2*n)
fd(t, n)
def draw_(t, n):
# draw a space
skip(t, n)
if __name__ == '__main__':
world = TurtleWorld()
# create and position the turtle
size = 20
bob = Turtle()
bob.delay = 0.01
for f in [draw_h, draw_e, draw_l, draw_l, draw_o]:
f(bob, size)
skip(bob, size)
wait_for_user()