forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathupload_test_stats.py
376 lines (319 loc) · 12.2 KB
/
upload_test_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import argparse
import os
import sys
import xml.etree.ElementTree as ET
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Any, Dict, List, Tuple
from tools.stats.upload_stats_lib import (
download_gha_artifacts,
download_s3_artifacts,
is_rerun_disabled_tests,
unzip,
upload_workflow_stats_to_s3,
)
def get_job_id(report: Path) -> int:
# [Job id in artifacts]
# Retrieve the job id from the report path. In our GHA workflows, we append
# the job id to the end of the report name, so `report` looks like:
# unzipped-test-reports-foo_5596745227/test/test-reports/foo/TEST-foo.xml
# and we want to get `5596745227` out of it.
return int(report.parts[0].rpartition("_")[2])
def parse_xml_report(
tag: str,
report: Path,
workflow_id: int,
workflow_run_attempt: int,
) -> List[Dict[str, Any]]:
"""Convert a test report xml file into a JSON-serializable list of test cases."""
print(f"Parsing {tag}s for test report: {report}")
try:
job_id = get_job_id(report)
print(f"Found job id: {job_id}")
except Exception:
job_id = None
print("Failed to find job id")
test_cases: List[Dict[str, Any]] = []
root = ET.parse(report)
# TODO: unlike unittest, pytest-flakefinder used by rerun disabled tests for test_ops
# includes skipped messages multiple times (50 times by default). This slows down
# this script too much (O(n)) because it tries to gather all the stats. This should
# be fixed later in the way we use pytest-flakefinder. A zipped test report from rerun
# disabled test is only few MB, but will balloon up to a much bigger XML file after
# extracting from a dozen to few hundred MB
if is_rerun_disabled_tests(root):
return test_cases
for test_case in root.iter(tag):
case = process_xml_element(test_case)
case["workflow_id"] = workflow_id
case["workflow_run_attempt"] = workflow_run_attempt
case["job_id"] = job_id
# [invoking file]
# The name of the file that the test is located in is not necessarily
# the same as the name of the file that invoked the test.
# For example, `test_jit.py` calls into multiple other test files (e.g.
# jit/test_dce.py). For sharding/test selection purposes, we want to
# record the file that invoked the test.
#
# To do this, we leverage an implementation detail of how we write out
# tests (https://bit.ly/3ajEV1M), which is that reports are created
# under a folder with the same name as the invoking file.
case["invoking_file"] = report.parent.name
test_cases.append(case)
return test_cases
def process_xml_element(element: ET.Element) -> Dict[str, Any]:
"""Convert a test suite element into a JSON-serializable dict."""
ret: Dict[str, Any] = {}
# Convert attributes directly into dict elements.
# e.g.
# <testcase name="test_foo" classname="test_bar"></testcase>
# becomes:
# {"name": "test_foo", "classname": "test_bar"}
ret.update(element.attrib)
# The XML format encodes all values as strings. Convert to ints/floats if
# possible to make aggregation possible in Rockset.
for k, v in ret.items():
try:
ret[k] = int(v)
except ValueError:
pass
try:
ret[k] = float(v)
except ValueError:
pass
# Convert inner and outer text into special dict elements.
# e.g.
# <testcase>my_inner_text</testcase> my_tail
# becomes:
# {"text": "my_inner_text", "tail": " my_tail"}
if element.text and element.text.strip():
ret["text"] = element.text
if element.tail and element.tail.strip():
ret["tail"] = element.tail
# Convert child elements recursively, placing them at a key:
# e.g.
# <testcase>
# <foo>hello</foo>
# <foo>world</foo>
# <bar>another</bar>
# </testcase>
# becomes
# {
# "foo": [{"text": "hello"}, {"text": "world"}],
# "bar": {"text": "another"}
# }
for child in element:
if child.tag not in ret:
ret[child.tag] = process_xml_element(child)
else:
# If there are multiple tags with the same name, they should be
# coalesced into a list.
if not isinstance(ret[child.tag], list):
ret[child.tag] = [ret[child.tag]]
ret[child.tag].append(process_xml_element(child))
return ret
def get_pytest_parallel_times() -> Dict[Any, Any]:
pytest_parallel_times: Dict[Any, Any] = {}
for report in Path(".").glob("**/python-pytest/**/*.xml"):
invoking_file = report.parent.name
root = ET.parse(report)
# TODO: Skip test reports from rerun disabled tests, same reason as mentioned
# above
if is_rerun_disabled_tests(root):
continue
assert len(list(root.iter("testsuite"))) == 1
for test_suite in root.iter("testsuite"):
pytest_parallel_times[
(invoking_file, get_job_id(report))
] = test_suite.attrib["time"]
return pytest_parallel_times
def get_tests(
workflow_run_id: int, workflow_run_attempt: int
) -> Tuple[List[Dict[str, Any]], Dict[Any, Any]]:
with TemporaryDirectory() as temp_dir:
print("Using temporary directory:", temp_dir)
os.chdir(temp_dir)
# Download and extract all the reports (both GHA and S3)
s3_paths = download_s3_artifacts(
"test-report", workflow_run_id, workflow_run_attempt
)
for path in s3_paths:
unzip(path)
artifact_paths = download_gha_artifacts(
"test-report", workflow_run_id, workflow_run_attempt
)
for path in artifact_paths:
unzip(path)
# Parse the reports and transform them to JSON
test_cases = []
for xml_report in Path(".").glob("**/*.xml"):
test_cases.extend(
parse_xml_report(
"testcase",
xml_report,
workflow_run_id,
workflow_run_attempt,
)
)
pytest_parallel_times = get_pytest_parallel_times()
return test_cases, pytest_parallel_times
def get_tests_for_circleci(
workflow_run_id: int, workflow_run_attempt: int
) -> Tuple[List[Dict[str, Any]], Dict[Any, Any]]:
# Parse the reports and transform them to JSON
test_cases = []
for xml_report in Path(".").glob("**/test/test-reports/**/*.xml"):
test_cases.extend(
parse_xml_report(
"testcase", xml_report, workflow_run_id, workflow_run_attempt
)
)
pytest_parallel_times = get_pytest_parallel_times()
return test_cases, pytest_parallel_times
def get_invoking_file_times(
test_case_summaries: List[Dict[str, Any]], pytest_parallel_times: Dict[Any, Any]
) -> List[Dict[str, Any]]:
def get_key(summary: Dict[str, Any]) -> Any:
return (
summary["invoking_file"],
summary["job_id"],
)
def init_value(summary: Dict[str, Any]) -> Any:
return {
"job_id": summary["job_id"],
"workflow_id": summary["workflow_id"],
"workflow_run_attempt": summary["workflow_run_attempt"],
"invoking_file": summary["invoking_file"],
"time": 0.0,
}
ret = {}
for summary in test_case_summaries:
key = get_key(summary)
if key not in ret:
ret[key] = init_value(summary)
ret[key]["time"] += summary["time"]
for key, val in ret.items():
# when running in parallel in pytest, adding the test times will not give the correct
# time used to run the file, which will make the sharding incorrect, so if the test is
# run in parallel, we take the time reported by the testsuite
if key in pytest_parallel_times:
val["time"] = pytest_parallel_times[key]
return list(ret.values())
def summarize_test_cases(test_cases: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""Group test cases by classname, file, and job_id. We perform the aggregation
manually instead of using the `test-suite` XML tag because xmlrunner does
not produce reliable output for it.
"""
def get_key(test_case: Dict[str, Any]) -> Any:
return (
test_case.get("file"),
test_case.get("classname"),
test_case["job_id"],
test_case["workflow_id"],
test_case["workflow_run_attempt"],
# [see: invoking file]
test_case["invoking_file"],
)
def init_value(test_case: Dict[str, Any]) -> Dict[str, Any]:
return {
"file": test_case.get("file"),
"classname": test_case.get("classname"),
"job_id": test_case["job_id"],
"workflow_id": test_case["workflow_id"],
"workflow_run_attempt": test_case["workflow_run_attempt"],
# [see: invoking file]
"invoking_file": test_case["invoking_file"],
"tests": 0,
"failures": 0,
"errors": 0,
"skipped": 0,
"successes": 0,
"time": 0.0,
}
ret = {}
for test_case in test_cases:
key = get_key(test_case)
if key not in ret:
ret[key] = init_value(test_case)
ret[key]["tests"] += 1
if "failure" in test_case:
ret[key]["failures"] += 1
elif "error" in test_case:
ret[key]["errors"] += 1
elif "skipped" in test_case:
ret[key]["skipped"] += 1
else:
ret[key]["successes"] += 1
ret[key]["time"] += test_case["time"]
return list(ret.values())
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Upload test stats to Rockset")
parser.add_argument(
"--workflow-run-id",
required=True,
help="id of the workflow to get artifacts from",
)
parser.add_argument(
"--workflow-run-attempt",
type=int,
required=True,
help="which retry of the workflow this is",
)
parser.add_argument(
"--head-branch",
required=True,
help="Head branch of the workflow",
)
parser.add_argument(
"--circleci",
action="store_true",
help="If this is being run through circleci",
)
args = parser.parse_args()
print(f"Workflow id is: {args.workflow_run_id}")
if args.circleci:
test_cases, pytest_parallel_times = get_tests_for_circleci(
args.workflow_run_id, args.workflow_run_attempt
)
else:
test_cases, pytest_parallel_times = get_tests(
args.workflow_run_id, args.workflow_run_attempt
)
# Flush stdout so that any errors in Rockset upload show up last in the logs.
sys.stdout.flush()
# For PRs, only upload a summary of test_runs. This helps lower the
# volume of writes we do to Rockset.
test_case_summary = summarize_test_cases(test_cases)
invoking_file_times = get_invoking_file_times(
test_case_summary, pytest_parallel_times
)
upload_workflow_stats_to_s3(
args.workflow_run_id,
args.workflow_run_attempt,
"test_run_summary",
test_case_summary,
)
upload_workflow_stats_to_s3(
args.workflow_run_id,
args.workflow_run_attempt,
"invoking_file_times",
invoking_file_times,
)
# Separate out the failed test cases.
# Uploading everything is too data intensive most of the time,
# but these will be just a tiny fraction.
failed_tests_cases = []
for test_case in test_cases:
if "rerun" in test_case or "failure" in test_case or "error" in test_case:
failed_tests_cases.append(test_case)
upload_workflow_stats_to_s3(
args.workflow_run_id,
args.workflow_run_attempt,
"failed_test_runs",
failed_tests_cases,
)
if args.head_branch == "master":
# For master jobs, upload everything.
upload_workflow_stats_to_s3(
args.workflow_run_id, args.workflow_run_attempt, "test_run", test_cases
)