Skip to content

Latest commit

 

History

History
67 lines (56 loc) · 2.74 KB

File metadata and controls

67 lines (56 loc) · 2.74 KB

Efficient Object Detection Algorithms Research

I would like to compare the models for real time object detection and their performance. In the future I am going to modify the code so that all networks can use the cv2.dnn module.

Models

Devices

  • Notebook i5-8265U + 12GB RAM + NVIDIA MX230
  • PC Core i5-8400 + 16GB RAM + NVIDIA GTX1060 6GB
  • NVIDIA Jetson TX2

Installation guide

git clone [email protected]:bartoszptak/EfficientDet.git
cd EfficientDet/
mv EfficientDet/* .
rm -r EfficientDet/ inference.py
  • download models
python download_models.py
  • (optionaly) download and prepare dataset for benchmark
mkdir data && cd data
wget "http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar"
tar -vxf VOCtest_06-Nov-2007.tar
cd VOCdevkit/VOC2007/JPEGImages/
# make dataset smaller
rm 00{2..9}*.jpg

Experiment config

  • select only 4 classes (this script): bicycle, bus, car, person
  • set fixed image size to 512x512
  • trained with default other parameters

Training results

Model Size GFLOPS [email protected] Train time
YOLOv3 512 99.42 0.8661 1-05:32:00
EffficientDet 512 2.5
(from pdf)
0.8870 23:12:18

Benchmark results

EffficientDet

Device Total FPS
batch=1
Total FPS
batch=2
Inference FPS
batch=1
Inference FPS
batch=2
NVIDIA
MX230
5.67 6.49 12.63 14.13
NVIDIA
GTX1060
15.07 17.77 34.43 42.05
NVIDIA
Jetson TX2

YOLOv3

Device Total FPS
batch=1
Total FPS
batch=2
Inference FPS
batch=1
Inference FPS
batch=2
NVIDIA
MX230
5.22 5.30 7.40 7.81
NVIDIA
GTX1060
11.36 11.43 27.99 29.88
NVIDIA
Jetson TX2