-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdraft.py
186 lines (159 loc) · 6.94 KB
/
draft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import torch
from torch.utils.data import DataLoader
from torch.nn.utils import parameters_to_vector
from copy import deepcopy
import higher
import numpy as np
from src.model.mnist_model import Mnist
from src.data.mnist_loader import get_loader
from os.path import join, isfile, isdir
import os
from math import ceil
import torch.nn.functional as F
def apply_grad(model, grad):
'''
assign gradient to model(nn.Module) instance. return the norm of gradient
'''
grad_norm = 0
for p, g in zip(model.parameters(), grad):
if p.grad is None:
p.grad = g
else:
p.grad += g
grad_norm += torch.sum(g**2)
grad_norm = grad_norm ** (1/2)
return grad_norm.item()
def mix_grad(grad_list):
'''
calc weighted average of gradient
'''
mixed_grad = []
for g_list in zip(*grad_list):
g_list = torch.stack([g_list[i] for i in range(len(grad_list))])
mixed_grad.append(torch.sum(g_list, dim=0))
return mixed_grad
class iMAML:
def __init__(
self,
global_epochs:int,
local_epochs:int,
global_lr:float,
local_lr:float,
model:torch.nn.Module,
support_loaders:list[DataLoader],
query_loaders:list[DataLoader],
lambda_:float,
n_cg:int
) -> None:
self.global_epochs:int = global_epochs
self.local_epochs:int = local_epochs
self.local_lr:float = local_lr
self.model:torch.nn.Module = deepcopy(model)
self.support_loaders:list[DataLoader] = support_loaders
self.query_loaders:list[DataLoader] = query_loaders
self.outer_opt = torch.optim.Adam(self.model.parameters(), lr=global_lr)
self.lambda_:float = lambda_
self.n_cg:int = n_cg
def _inner_loop(self, model, batch, loss_fn):
X, y = batch[0], batch[1]
pred = model(X)
loss = loss_fn(pred, y)
return loss, (pred.argmax(1) == y).type(torch.float).sum().item()
def loss_fn(self, pred:list[torch.Tensor], y:list[torch.Tensor], local_params:list[torch.Tensor], global_params:list[torch.Tensor]):
return F.cross_entropy(pred, y) + self.lambda_/2 * sum([((gp - lp) ** 2).sum() for gp, lp in zip(global_params, local_params)])
@torch.no_grad()
def cg(self, in_grad, outer_grad, params):
x = outer_grad.clone().detach()
r = outer_grad.clone().detach() - self.hv_prod(in_grad, x, params)
p = r.clone().detach()
for i in range(self.n_cg):
Ap = self.hv_prod(in_grad, p, params)
alpha = (r @ r)/(p @ Ap)
x = x + alpha * p
r_new = r - alpha * Ap
beta = (r_new @ r_new)/(r @ r)
p = r_new + beta * p
r = r_new.clone().detach()
return self.vec_to_grad(x)
def vec_to_grad(self, vec):
pointer = 0
res = []
for param in self.model.parameters():
num_param = param.numel()
res.append(vec[pointer:pointer+num_param].view_as(param).data)
pointer += num_param
return res
@torch.enable_grad()
def hv_prod(self, in_grad, x, params):
hv = torch.autograd.grad(in_grad, params, retain_graph=True, grad_outputs=x)
hv = torch.nn.utils.parameters_to_vector(hv).detach()
# precondition with identity matrix
return hv/self.lambda_ + x
def _outer_loop(self, epoch:int, is_train:bool=True):
tasks_per_round = 5
count = 0
num_batch_task = ceil(len(self.support_loaders)/tasks_per_round)
loss_fn = torch.nn.CrossEntropyLoss()
# lặp qua tất cả các batch task
for batch_task_idx in range(num_batch_task):
inner_loss = 0.
outer_loss = 0.
inner_opt = torch.optim.Adam(self.model.parameters(), lr=self.local_lr)
accuracies = []
grad_list = []
# lặp qua tất cả các task trong batch_task
for task_idx in range(count, count + tasks_per_round):
if task_idx >= len(self.support_loaders):
break
with higher.innerloop_ctx(self.model, inner_opt, copy_initial_weights=False) as (fmodel, diffopt):
for _ in range(self.local_epochs):
for batch in self.support_loaders[task_idx]:
support_loss, _ = self._inner_loop(fmodel, batch, loss_fn)
diffopt.step(support_loss)
for batch in self.support_loaders[task_idx]:
support_loss, _ = self._inner_loop(fmodel, batch, loss_fn)
inner_loss += support_loss
correct = 0.
for batch in self.query_loaders[task_idx]:
query_loss, correct = self._inner_loop(fmodel, batch, loss_fn)
outer_loss += query_loss
if is_train:
params = list(fmodel.parameters())
inner_grad = parameters_to_vector(torch.autograd.grad(inner_loss, params, create_graph=True))
outer_grad = parameters_to_vector(torch.autograd.grad(outer_loss, params))
implicit_grad = self.cg(inner_grad, outer_grad, params)
grad_list.append(implicit_grad)
# log info for this task
accuracies.append(correct/len(self.query_loaders[task_idx].dataset))
print(f'[Task {task_idx}]: Loss={query_loss.item():.5f}, Acc={accuracies[-1]*100:.2f}%')
mean_acc, std = np.mean(accuracies)*100, np.std(accuracies)*100
if is_train:
self.outer_opt.zero_grad()
grad = mix_grad(grad_list)
apply_grad(self.model, grad)
self.outer_opt.step()
print(f'\n[Epoch {epoch}]: Training loss = {outer_loss.item():0.5f}, Training acc = {mean_acc:.2f}±{std:.2f}%\n')
else:
print(f'\n[Epoch {epoch}]: Testing loss = {outer_loss.item():0.5f}, Testing acc = {mean_acc:.2f}±{std:.2f}%\n')
count += tasks_per_round
def train(self):
for outer_it in range(self.global_epochs):
print(f'\n======= Epoch {outer_it} =======\n')
self._outer_loop(epoch=outer_it)
if outer_it == 0 or (outer_it+1)%5 == 0:
self.test(outer_it)
def test(self, epoch:int):
return self._outer_loop(epoch=epoch, is_train=False)
if __name__=='__main__':
print('\nPrepare data\n')
support_loaders = []
query_loaders = []
dir = './data/mnist/client_test'
for filename in os.listdir(dir):
loader = get_loader(join(dir, filename))
if 'q' in filename:
query_loaders.append(loader)
else:
support_loaders.append(loader)
learner = iMAML(15, 2, 0.001, 0.001, Mnist(), support_loaders, query_loaders, 100., 5)
learner.train()