-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.py
69 lines (52 loc) · 1.74 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import json
from typing import TypedDict
from potassium import Potassium, Request, Response
import threading
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, pipeline
import torch
app = Potassium("my_app")
class Context(TypedDict):
model: AutoModelForCausalLM
tokenizer: AutoTokenizer
streamer: TextIteratorStreamer
# @app.init runs at startup, and loads models into the app's context
@app.init
def init():
model = AutoModelForCausalLM.from_pretrained("TheBloke/Mistral-7B-v0.1-AWQ")
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
model.to(torch.device("cuda"))
context = {
"model": model,
"tokenizer": tokenizer,
}
return context
# @app.handler runs for every call
@app.handler("/")
def handler(context: dict, request: Request) -> Response:
prompt = request.json.get("prompt")
model = context["model"]
tokenizer = context["tokenizer"]
streamer = TextIteratorStreamer(tokenizer)
model_inputs = tokenizer([prompt], return_tensors="pt").to(torch.device("cuda"))
def run_model():
_ = model.generate(**model_inputs, streamer=streamer, max_new_tokens=100, do_sample=True)
t = threading.Thread(target=run_model)
t.start()
def generate_text():
for new_text in streamer:
if new_text == "":
continue
payload = {
"text": new_text
}
json_string = json.dumps(payload) + "\n"
json_bytes = json_string.encode("utf-8")
yield json_bytes
return Response(
body=generate_text(),
headers={
"Content-Type": "application/json"
}
)
if __name__ == "__main__":
app.serve()