-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathapp.py
47 lines (43 loc) · 1.51 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from potassium import Potassium, Request, Response
import cv2
from PIL import Image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
import torch
import numpy as np
from diffusers.utils import load_image
import base64
from io import BytesIO
app = Potassium("controlnet-canny")
@app.init
def init():
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-canny"
).to("cuda:0")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
).to("cuda:0")
context = {
"pipe": pipe
}
return context
@app.handler()
def handler(context: dict, request: Request) -> Response:
pipe = context.get("pipe")
image = request.json.get("image")
prompt = request.json.get("prompt")
image = load_image(image)
image = np.array(image)
low_threshold = 100
high_threshold = 200
image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image = Image.fromarray(image)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
image = pipe(prompt, image, num_inference_steps=20).images[0]
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue())
return Response(json = {"output": img_str.decode('utf-8')}, status=200)
if __name__ == "__main__":
app.serve()