-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathFFT-Tutorial.py
379 lines (239 loc) · 9.99 KB
/
FFT-Tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
# -*- coding: utf-8 -*-
# <nbformat>3.0</nbformat>
# <headingcell level=1>
# FFT with Python
# <markdowncell>
# If you want to know how the FFT Algorithm works, Jake Vanderplas explained it extremely well in his blog: http://jakevdp.github.io/blog/2013/08/28/understanding-the-fft/
# <markdowncell>
# Here is, how it is applied and how the axis are scaled to real physical values.
# <codecell>
import csv
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# <codecell>
%pylab inline --no-import-all
# <headingcell level=2>
# First: A synthetic Signal, a simple Sine Wave
# <codecell>
t = np.linspace(0, 2*np.pi, 1000, endpoint=True)
f = 3.0 # Frequency in Hz
A = 100.0 # Amplitude in Unit
s = A * np.sin(2*np.pi*f*t) # Signal
# <codecell>
plt.plot(t,s)
plt.xlabel('Time ($s$)')
plt.ylabel('Amplitude ($Unit$)')
# <headingcell level=2>
# Do the Discrete Fourier Transform with the Blazing Fast FFT Algorithm
# <codecell>
Y = np.fft.fft(s)
# <markdowncell>
# That's it.
# <headingcell level=3>
# Let's take a look at the result
# <codecell>
plt.plot(Y)
# <markdowncell>
# Hm, looks strange. Something, which is mirrored at the half, right?!
# <codecell>
N = len(Y)/2+1
Y[N-4:N+3]
# <markdowncell>
# Can you see it?
#
# And it is something with imaginary parts (the $j$) in it. So let's just take the real part of it with the `abs` command.
# <codecell>
plt.plot(np.abs(Y))
# <markdowncell>
# Again, it is perfectly mirrored at the half. So let's just take the first half.
# <headingcell level=2>
# Amplitude Spectrum
# <markdowncell>
# Remember: $N$ is half the length of the output of the FFT.
# <codecell>
plt.plot(np.abs(Y[:N]))
# <markdowncell>
# That looks pretty good. It is called the **amplitude spectrum** of the time domain signal and was calculated with the Discrete Fourier Transform with the *Chuck-Norris-Fast* FFT algorithm. But how to get the x- and y-axis to real physical scaled values?!
# <headingcell level=2>
# Real Physical Values for the Amplitude and Frequency Axes of the FFT
# <headingcell level=3>
# x-Axis: The Frequency Axis of the FFT
# <markdowncell>
# First, let us determine the timestep, which is used to sample the signal. We made it synthetically, but a real signal has a period (measured every second or every day or something similar). If there is no constant frequency, the FFT can not be used! One can interpolate the signal to a new time base, but then the signal spectrum is not the original one. It depends on the case, if the quality is enough or if the information is getting lost with this shift keying. Enough.
#
# We have a good signal:
# <codecell>
dt = t[1] - t[0]
fa = 1.0/dt # scan frequency
print('dt=%.5fs (Sample Time)' % dt)
print('fa=%.2fHz (Frequency)' % fa)
# <markdowncell>
# Now we need to create a x-Axis vector, which starts from $0.0$ and is filled with $N$ (length of half of the FFT signal) values and going all the way to the maximum frequency, which can be reconstructed. This frequency is half of the maximum sampling frequency ($f_a$) and is called the `Nyquist-Frequency` (see [Nyquist-Shannon Sampling Theorem](http://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem)).
# <codecell>
X = np.linspace(0, fa/2, N, endpoint=True)
X[:4]
# <markdowncell>
# Now let's plot the amplitude spectrum over the newly created frequency vector $X$
# <codecell>
plt.plot(X, np.abs(Y[:N]))
plt.xlabel('Frequency ($Hz$)')
# <markdowncell>
# Yeah! The x-Axis is showing us, that we have a peak at exactly these frequencies, from which our synthetically created signal was build of. That was the job.
#
# The sample frequency was $f_a=159Hz$, so the amplitude spectrum is from $0.0$ to $\frac{f_a}{2}=79.5Hz$.
# <headingcell level=3>
# y-Axis: The Amplitude of the FFT Signal
# <markdowncell>
# This task is not this easy, because one have to understand, how the Fourier Transform or the Discrete Fourier Transform works in detail. We need to transform the y-axis value from *something* to a real physical value. Because the power of the signal in time and frequency domain have to be equal, and we just used the left half of the signal (look at $N$), now we need to multiply the amplitude with the factor of **2**. If we inverse the FFT with `IFFT`, the power of the signal is the same.
#
# But that was the easy part. The more complicated one is, if you look at the definition of the Discrete Fourier Transform:
#
# $Y[k]=\frac{1}{N} \underbrace{\sum_{N} x(nT)\cdot e^{-i 2 \pi \frac{k}{N}n}}_{DFT}$
#
# In most implementations, the output $Y$ of the `FFT` is normalized with the number of samples. We have to divide by $N$ to get the real physical value.
#
# The magic factor is $\frac{2}{N}$.
# <codecell>
plt.plot(X, 2.0*np.abs(Y[:N])/N)
plt.xlabel('Frequency ($Hz$)')
plt.ylabel('Amplitude ($Unit$)')
# <markdowncell>
# Yeah! Job accomplised. Congratulations. But wait...
#
# If you look at the parameters for the original signal ($A$), our signal amplitude was not, what is calculated here. Why??
# <headingcell level=2>
# The wrong Amplitude Spectrum because of Leakage Effect
# <markdowncell>
# Take a look at the original signal.
# <codecell>
plt.plot(t,s)
plt.xlabel('Time ($s$)')
plt.ylabel('Amplitude ($Unit$)')
# <markdowncell>
# Do you see, that the signal do not end at amplitude zero, where it started? That means, if you add these signals up, it looks like this:
# <codecell>
plt.plot(t, s, label='Signal 1')
plt.plot(t+t[-1], s, label='Signal 1 again')
plt.xlim(t[-1]-1, t[-1]+1)
plt.xlabel('Time ($s$)')
plt.ylabel('Amplitude ($Unit$)')
plt.legend()
# <markdowncell>
# And the Fourier Transform was originally invented by Mr Fourier for, and only for, periodic signals (see [Fourier Transform](http://en.wikipedia.org/wiki/Fourier_transform)). So the Discrete Fourier Transform does and the Fast Fourier Transform Algorithm does it, too.
#
# The signal has to be strictly periodic, which introduces the so called **windowing** to eliminate the leakage effect.
# <headingcell level=2>
# Window Functions to get periodic signals from real data
# <markdowncell>
# There are a lot of window functions, like the *Hamming*, *Hanning*, *Blackman*, ...
# <codecell>
hann = np.hanning(len(s))
hamm = np.hamming(len(s))
black= np.blackman(len(s))
plt.figure(figsize=(8,3))
plt.subplot(131)
plt.plot(hann)
plt.title('Hanning')
plt.subplot(132)
plt.plot(hamm)
plt.title('Hamming')
plt.subplot(133)
plt.plot(black)
plt.title('Blackman')
plt.tight_layout()
# <markdowncell>
# All have different characteristics, which is an [own engineering discipline](http://en.wikipedia.org/wiki/Window_function). Let's take the *Hanning* window function to multiply our signal with.
# <codecell>
plt.plot(t,hann*s)
plt.xlabel('Time ($s$)')
plt.ylabel('Amplitude ($Unit$)')
plt.title('Signal with Hanning Window function applied')
# <headingcell level=2>
# FFT with windowed signal
# <codecell>
Yhann = np.fft.fft(hann*s)
plt.figure(figsize=(7,3))
plt.subplot(121)
plt.plot(t,s)
plt.title('Time Domain Signal')
plt.ylim(np.min(s)*3, np.max(s)*3)
plt.xlabel('Time ($s$)')
plt.ylabel('Amplitude ($Unit$)')
plt.subplot(122)
plt.plot(X, 2.0*np.abs(Yhann[:N])/N)
plt.title('Frequency Domain Signal')
plt.xlabel('Frequency ($Hz$)')
plt.ylabel('Amplitude ($Unit$)')
plt.annotate("FFT",
xy=(0.0, 0.1), xycoords='axes fraction',
xytext=(-0.8, 0.2), textcoords='axes fraction',
size=30, va="center", ha="center",
arrowprops=dict(arrowstyle="simple",
connectionstyle="arc3,rad=0.2"))
plt.tight_layout()
plt.savefig('FFT.png',bbox_inches='tight', dpi=150, transparent=True)
# <markdowncell>
# This is exactly, what we wanted to see: A beautiful amplitude spectrum of our signal, which was calcualted with the FFT algorithm.
#
# Now let's take a look at some real data!
# <headingcell level=1>
# Vertical Grid Load of Germany 2013
# <markdowncell>
# "The vertical grid load is the sum, positive or negative, of all power transferred from the transmission grid through directly connected transformers and power lines to distribution grids and final consumers."
#
# Download the Data from [50Hertz.com](http://www.50hertz.com/de/1987.htm)
# <codecell>
!wget -O 'Vertikale_Netzlast_2013.csv' 'http://www.50hertz.com/transmission/files/sync/Netzkennzahlen/Netzlast/ArchivCSV/Vertikale_Netzlast_2013.csv'
# <codecell>
df = pd.read_csv('Vertikale_Netzlast_2013.csv', header=6, sep=';', parse_dates=[[0, 1]], index_col=0, na_values=['n.v.'])
df.rename(columns={'Unnamed: 3': 'Load'}, inplace=True)
# <markdowncell>
# Interpolate the missing data
# <codecell>
df.Load = df.Load.interpolate()
# <codecell>
plt.figure(figsize=(14,5))
df.Load.plot()
plt.title('Vertical Grid Load Germany 2013')
plt.ylabel('Power [$MW$]')
plt.savefig('VerticalGridLoadGermany2013.png',bbox_inches='tight', dpi=150, transparent=True)
# <headingcell level=3>
# Do the FFT
# <codecell>
hann = np.hanning(len(df.Load.values))
# <codecell>
Y = np.fft.fft(hann*df.Load.values)
# <codecell>
N = len(Y)/2+1
fa = 1.0/(15.0*60.0) # every 15 minutes
print('fa=%.4fHz (Frequency)' % fa)
# <codecell>
X = np.linspace(0, fa/2, N, endpoint=True)
# <codecell>
plt.plot(X, 2.0*np.abs(Y[:N])/N)
plt.xlabel('Frequency ($Hz$)')
plt.ylabel('vertical powergrid load ($MW$)')
# <markdowncell>
# Hm. This is not what we expected. For humans, the x-axis is not understandable. What is $0.0002Hz$? Let's convert it to period, which is the reciprocal of the sampling rate.
# <headingcell level=2>
# The Rythm of modern Life, seen in the Power Grid
# <codecell>
Xp = 1.0/X # in seconds
Xph= Xp/(60.0*60.0) # in hours
# <codecell>
plt.figure(figsize=(15,6))
plt.plot(Xph, 2.0*np.abs(Y[:N])/N)
plt.xticks([12, 24, 33, 84, 168])
plt.xlim(0, 180)
plt.ylim(0, 1500)
plt.xlabel('Period ($h$)')
plt.savefig('VerticalGridLoadGermany2013-FFT.png',bbox_inches='tight', dpi=150, transparent=True)
# <markdowncell>
# Aaaaah! Now we see following peaks:
#
# * `12h` day/night rythm
# * `24h` daily rythm
# * `33.6h` something? Any suggestions?
# * `84.2h` something? Any suggestions?
# * `168h` week rythm