-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTime_series.py
216 lines (179 loc) · 8.03 KB
/
Time_series.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import matplotlib.pylab as plt
from matplotlib.pylab import rcParams
from matplotlib import pyplot
rcParams['figure.figsize'] = 20, 10
import pandas as pd
import numpy as np
import itertools
from statsmodels.tsa.arima_model import ARIMA
import statsmodels.api as sm
from math import sqrt
from sklearn.metrics import mean_squared_error
import warnings
warnings.filterwarnings("ignore") # ignore warning messages
# Define p, d, q parameters
p = d = q = range(0, 2)
# Get minimum p,d,q of all different combinations
pdq = list(itertools.product(p, d, q))
seasonal_pdq = [(x[0], x[1], x[2], 7) for x in list(itertools.product(p, d, q))]
# Function for evaluating model for first prediction
def trainModel_1(productData):
totalsum = np.sum(productData,axis=1).astype(float)
sumarray = np.array(totalsum)
ts = pd.Series(sumarray)
ts.index = pd.to_datetime(ts.index,unit = 'D')
train_data=productData[0:100]
test_data=productData[100:118]
sum_train = np.sum(train_data,axis=1).astype(float)
sum_test = np.sum(test_data,axis=1).astype(float)
sumarray_train = np.array(sum_train)
sumarray_test = np.array(sum_test)
ts_train = pd.Series(sumarray_train)
ts_test = pd.Series(sumarray_test)
ts_train.index = pd.to_datetime(ts_train.index,unit = 'D')
ts_test.index = pd.to_datetime(ts_test.index,unit = 'D')
eval_model = sm.tsa.statespace.SARIMAX(ts_train, order=(1,1,1),seasonal_order=(0,1,1,7),enforce_stationarity=False,enforce_invertibility=False)
eval_result = eval_model.fit(disp=0)
eval_foreCast = eval_result.forecast(steps = 18)
#plt.plot(ts,label='Original Values')
#plt.plot(eval_foreCast, color='red',label='Predicted Values' )
#plt.legend()
#plt.show()
rms=sqrt(mean_squared_error(ts_test,eval_foreCast))
#print(rms)
return;
# Function for evaluating model for second prediction
def trainModel_2(productData):
count=0
train_data=productData[0:100]
test_data=productData[100:118]
for column in train_data:
productarray=np.array(train_data[column]).astype(float)
seriesproduct=pd.Series(productarray)
seriesproduct.index=pd.to_datetime(seriesproduct.index,unit='D')
minval=0
paramval=''
seasonalparam=''
for product_param in pdq:
for product_param_seasonal in seasonal_pdq:
mod = sm.tsa.statespace.SARIMAX(seriesproduct,
order=product_param,
seasonal_order=product_param_seasonal,
enforce_stationarity=False,
enforce_invertibility=False)
product_results = mod.fit()
if minval==0:
minval=product_results.aic
paramval=product_param
seasonalparam=product_param_seasonal
if product_results.aic<minval:
minval=product_results.aic
paramval=product_param
seasonalparam=product_param_seasonal
#print(product_minval,product_paramval,product_seasonalparam)
# Apply SARIMAX for training
testRow = sm.tsa.statespace.SARIMAX(seriesproduct,
order=product_paramval,
seasonal_order=product_seasonalparam,
enforce_stationarity=False,
enforce_invertibility=False)
testArima = testRow.fit(disp=0)
# Predict values for test data
arimaForecast=testArima.forecast(steps=18)
final=np.array(arimaForecast)
testingproductarray1=np.array(testing[count]).astype(float)
testingproductarray=testingproductarray1
testingseriesproduct1=pd.Series(testingproductarray)
testingseriesproduct=testingseriesproduct1
testingseriesproduct.index=pd.to_datetime(testingseriesproduct.index,unit='D')
# Find error between predicted and actual values
rms1 = sqrt(mean_squared_error(testingseriesproduct, arimaForecast))
#print(rms1)
count=count+1
return;
# Read the product distribution file
path = 'product_distribution_training_set.txt'
productData = pd.read_csv(path,sep='\t',header=None)
# Transpose the dataframe
productData = productData.T
# Remove the first row from data (key products row)
productHeader = productData.iloc[0]
productData = productData.drop(productData.index[[0]])
# Test the Model before prediction
#trainModel_1(productData)
print("Predicting overall sale for next 29 days...")
# Sum of all products sold at each day
sum = np.sum(productData,axis=1).astype(float)
sumarray = np.array(sum)
# Create a time series object with the sumarray(total products sold for each day)
ts = pd.Series(sumarray)
# Create the datetime stamp for the time series object
ts.index = pd.to_datetime(ts.index,unit = 'D')
# Pass the time series object to ARIMA model to train the test data
model = sm.tsa.statespace.SARIMAX(ts, order=(1,1,1),seasonal_order=(0,1,1,7),enforce_stationarity=False,enforce_invertibility=False)
results_ARIMA = model.fit(disp=0)
# Open a file called output.txt to write the predictions
file = open('output.txt','w+')
# Predict total sale of products for each day (for next 29 days) using forecast method of ARIMA
foreCast = results_ARIMA.forecast(steps = 29)
#plt.plot(ts,label='Train Data')
#plt.plot(foreCast, color='red',label='Prediction for 29 days' )
#plt.legend()
#plt.show()
#Write first prediction to file
w = '0\t'
for i in foreCast:
i = int(round(i))
w += str(i) + '\t'
file.write(w)
file.write('\n\n')
header_count = 0
# Test the Model before prediction
#trainModel_2(productData)
print("Predicting sale for each product for next 29 days...")
# Predict the sale for each product for each day ( for next 29 days)
for col in productData:
parray = np.array(productData[col]).astype(float)
pseries = pd.Series(parray)
pseries.index = pd.to_datetime(pseries.index,unit = 'D')
minAic=0
orderparams=''
seasonalparams=''
for product_param in pdq:
for product_param_seasonal in seasonal_pdq:
aicmod = sm.tsa.statespace.SARIMAX(pseries,
order=product_param,
seasonal_order=product_param_seasonal,
enforce_stationarity=False,
enforce_invertibility=False)
product_results = aicmod.fit()
if minAic==0:
minAic=product_results.aic
orderparams=product_param
seasonalparams=product_param_seasonal
if product_results.aic<minAic:
minAic=product_results.aic
orderparams=product_param
seasonalparams=product_param_seasonal
#print(minAic,orderparams,seasonalparams)
# Apply SARIMAX for current product data
parima = sm.tsa.statespace.SARIMAX(pseries,
order=orderparams,
seasonal_order=seasonalparams,
enforce_stationarity=False,
enforce_invertibility=False)
results_ARIMA = parima.fit(disp=0)
#model = sm.tsa.statespace.SARIMAX(nts, order=(1,1,1),seasonal_order=(0,1,1,7),enforce_stationarity=False,enforce_invertibility=False)
#results_ARIMA = model.fit(disp=0)
foreCast = results_ARIMA.forecast(steps = 29)
s =str(productHeader[header_count]) + '\t'
header_count += 1
for i in foreCast:
if i < 0:
i = 0
i = int(round(i))
s += str(i) + '\t'
file.write(s)
file.write('\n\n')
file.close();
print("Prediction written successfully !")