-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelp_code_demo.py
194 lines (155 loc) · 5.34 KB
/
help_code_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import csv, torch, os
import numpy as np
def ACC(mylist):
tp, fn, fp, tn = mylist[0], mylist[1], mylist[2], mylist[3]
total = sum(mylist)
acc = (tp + tn) / total
return acc
def PPV(mylist):
tp, fn, fp, tn = mylist[0], mylist[1], mylist[2], mylist[3]
# for the case: there is no VA segs for the patient, then ppv should be 1
if tp + fn == 0:
ppv = 1
# for the case: there is some VA segs, but the predictions are wrong
elif tp + fp == 0 and tp + fn != 0:
ppv = 0
else:
ppv = tp / (tp + fp)
return ppv
def NPV(mylist):
tp, fn, fp, tn = mylist[0], mylist[1], mylist[2], mylist[3]
# for the case: there is no non-VA segs for the patient, then npv should be 1
if tn + fp == 0:
npv = 1
# for the case: there is some VA segs, but the predictions are wrong
elif tn + fn == 0 and tn + fp != 0:
npv = 0
else:
npv = tn / (tn + fn)
return npv
def Sensitivity(mylist):
tp, fn, fp, tn = mylist[0], mylist[1], mylist[2], mylist[3]
# for the case: there is no VA segs for the patient, then sen should be 1
if tp + fn == 0:
sensitivity = 1
else:
sensitivity = tp / (tp + fn)
return sensitivity
def Specificity(mylist):
tp, fn, fp, tn = mylist[0], mylist[1], mylist[2], mylist[3]
# for the case: there is no non-VA segs for the patient, then spe should be 1
if tn + fp == 0:
specificity = 1
else:
specificity = tn / (tn + fp)
return specificity
def BAC(mylist):
sensitivity = Sensitivity(mylist)
specificity = Specificity(mylist)
b_acc = (sensitivity + specificity) / 2
return b_acc
def F1(mylist):
precision = PPV(mylist)
recall = Sensitivity(mylist)
if precision + recall == 0:
f1 = 0
else:
f1 = 2 * (precision * recall) / (precision + recall)
return f1
def FB(mylist, beta=2):
precision = PPV(mylist)
recall = Sensitivity(mylist)
if precision + recall == 0:
f1 = 0
else:
f1 = (1+beta**2) * (precision * recall) / ((beta**2)*precision + recall)
return f1
def stats_report(mylist):
f1 = round(F1(mylist), 5)
fb = round(FB(mylist), 5)
se = round(Sensitivity(mylist), 5)
sp = round(Specificity(mylist), 5)
bac = round(BAC(mylist), 5)
acc = round(ACC(mylist), 5)
ppv = round(PPV(mylist), 5)
npv = round(NPV(mylist), 5)
output = str(mylist) + '\n' + \
"F-1 = " + str(f1) + '\n' + \
"F-B = " + str(fb) + '\n' + \
"SEN = " + str(se) + '\n' + \
"SPE = " + str(sp) + '\n' + \
"BAC = " + str(bac) + '\n' + \
"ACC = " + str(acc) + '\n' + \
"PPV = " + str(ppv) + '\n' + \
"NPV = " + str(npv) + '\n'
print("F-1 = ", F1(mylist))
print("F-B = ", FB(mylist))
print("SEN = ", Sensitivity(mylist))
print("SPE = ", Specificity(mylist))
print("BAC = ", BAC(mylist))
print("ACC = ", ACC(mylist))
print("PPV = ", PPV(mylist))
print("NPV = ", NPV(mylist))
return output
def loadCSV(csvf):
"""
return a dict saving the information of csv
:param splitFile: csv file name
:return: {label:[file1, file2 ...]}
"""
dictLabels = {}
with open(csvf) as csvfile:
csvreader = csv.reader(csvfile, delimiter=',')
next(csvreader, None) # skip (filename, label)
for i, row in enumerate(csvreader):
filename = row[0]
label = row[1]
# append filename to current label
if label in dictLabels.keys():
dictLabels[label].append(filename)
else:
dictLabels[label] = [filename]
return dictLabels
def txt_to_numpy(filename, row):
file = open(filename)
lines = file.readlines()
datamat = np.arange(row, dtype=np.float)
row_count = 0
for line in lines:
line = line.strip().split(' ')
datamat[row_count] = line[0]
row_count += 1
return datamat
class ToTensor(object):
def __call__(self, sample):
text = sample['IEGM_seg']
return {
'IEGM_seg': torch.from_numpy(text),
'label': sample['label']
}
class IEGM_DataSET():
def __init__(self, root_dir, indice_dir, mode, size, transform=None):
self.root_dir = root_dir
self.indice_dir = indice_dir
self.size = size
self.names_list = []
self.transform = transform
csvdata_all = loadCSV(os.path.join(self.indice_dir, mode + '_indice.csv'))
for i, (k, v) in enumerate(csvdata_all.items()):
self.names_list.append(str(k) + ' ' + str(v[0]))
def __len__(self):
return len(self.names_list)
def __getitem__(self, idx):
text_path = self.root_dir + self.names_list[idx].split(' ')[0]
if not os.path.isfile(text_path):
print(text_path + 'does not exist')
return None
IEGM_seg = txt_to_numpy(text_path, self.size).reshape(1, self.size, 1)
label = int(self.names_list[idx].split(' ')[1])
sample = {'IEGM_seg': IEGM_seg, 'label': label}
return sample
def pytorch2onnx(net_path, net_name, size):
net = torch.load(net_path, map_location=torch.device('cpu'))
dummy_input = torch.randn(1, 1, size, 1)
optName = str(net_name)+'.onnx'
torch.onnx.export(net, dummy_input, optName, verbose=True)