-
Notifications
You must be signed in to change notification settings - Fork 4
/
dfftl.f
executable file
·678 lines (678 loc) · 17.5 KB
/
dfftl.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
SUBROUTINE DFFTL(X,N,NDIR,IERR)
C
C $$$$$ CALLS FFT AND REALTR $$$$$
C
C IF IABS(NDIR).EQ.1 FFTL FOURIER TRANSFORMS THE N POINT REAL TIME
C SERIES IN ARRAY X. THE RESULT OVERWRITES X STORED AS
C (N+2)/2 COMPLEX NUMBERS (NON-NEGATIVE FREQUENCIES ONLY). IF
C IABS(NDIR).EQ.2 FFTL FOURIER TRANSFORMS THE (N+2)/2 COMPLEX FOURIER
C COEFFICIENTS (NON-NEGATIVE FREQUENCIES ONLY) IN ARRAY X
C (ASSUMING THE SERIES IS HERMITIAN). THE RESULTING N POINT REAL
C TIME SERIES OVERWRITES X. IF NDIR.GT.0 THE FOREWARD TRANSFORM USES
C THE SIGN CONVENTION EXP(I*W*T). IF NDIR.LT.0 THE FOREWARD TRANSFORM
C USES THE SIGN CONVENTION EXP(-I*W*T). THE FOREWARD TRANSFORM IS
C NORMALIZED SUCH THAT A SINE WAVE OF UNIT AMPLITUDE IS TRANSFORMED
C INTO DELTA FUNCTIONS OF UNIT AMPLITUDE. THE BACKWARDS TRANSFORM IS
C NORMALIZED SUCH THAT TRANSFORMING FOREWARD AND THEN BACK RECOVERS
C THE ORIGINAL SERIES. IERR IS NORMALLY ZERO. IF IERR.EQ.1 THEN FFT
C HAS NOT BEEN ABLE TO FACTOR THE SERIES. HOWEVER, X HAS BEEN
C SCRAMBLED BY REALTR. NOTE THAT IF N IS ODD THE LAST POINT WILL NOT
C BE USED IN THE TRANSFORM.
C
C -RPB
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 X
DIMENSION X(*)
N2=N/2
IDIR=IABS(NDIR)
GO TO (1,2),IDIR
C DO FOREWARD TRANSFORM (IE. TIME TO FREQUENCY).
1 CALL DFFT(X,X(2),N2,N2,N2,2,IERR)
CALL DREALTR(X,X(2),N2,2)
N1=2*N2+2
SCALE=1.D0/DFLOAT(N)
IF(NDIR.GT.0) GO TO 3
DO 5 I=4,N,2
5 X(I)=-X(I)
GO TO 3
C DO BACKWARD TRANSFORM (IE. FREQUENCY TO TIME).
2 IF(NDIR.GT.0) GO TO 6
DO 7 I=4,N,2
7 X(I)=-X(I)
6 X(2)=0.D0
X(2*N2+2)=0.D0
CALL DREALTR(X,X(2),N2,-2)
CALL DFFT(X,X(2),N2,N2,N2,-2,IERR)
N1=2*N2
SCALE=.5D0
C NORMALIZE THE TRANSFORM.
3 DO 4 I=1,N1
4 X(I)=SCALE*X(I)
RETURN
END
SUBROUTINE DREALTR(A,B,N,ISN)
C SUBROUTINE REALTR IS A SINGLE PRECISION VERSION OF RLTRDP.
C ALL FLOATING POINT VARIABLES ARE 32 BITS AND ALL INTEGERS
C ARE 32 BITS.
C
C TITLE - REALTR = REAL TRANSFORM
C FOURIER TRANSFORM OF REAL SERIES FROM OUTPUT OF FFT
C
C
C ---ABSTRACT---
C SUBROUTINE REALTR (A,B,N,ISN)
C IF ISN=1, THIS SUBROUTINE COMPLETES THE FOURIER TRANS-
C FORM OF 2*N REAL DATA VALUES, WHERE THE ORIGINAL DATA
C VALUES ARE STORED ALTERNATELY IN ARRAYS A AND B, AND ARE
C FIRST TRANSFORMED BY A COMPLEX FOURIER TRANSFORM OF
C DIMENSION N.
C THE COSINE COEFFICIENTS ARE IN A(1),A(2),...A(N+1) AND
C THE SINE COEFFICIENTS ARE IN B(1),B(2),...B(N+1).
C A TYPICAL CALLING SEQUENCE IS
C CALL FFT (A,B,N,1)
C CALL REALTR (A,B,N,1)
C THE RESULTS SHOULD BE MULTIPLIED BY 0.5/N TO GIVE THE
C USUAL SCALING OF COEFFICIENTS.
C IF ISN=1, THE INVERSE TRANSFORMATION IS DONE, THE
C FIRST STEP IN EVALUATING A REAL FOURIER SERIES.
C A TYPICAL CALLING SEQUENCE IS
C CALL REALTR (A,B,N,-1)
C CALL FFT (A,B,N,-1)
C THE RESULTS SHOULD BE MULTIPLIED BY 0.5 TO GIVE THE
C USUAL SCALING, AND THE TIME DOMAIN RESULTS ALTERNATE
C IN ARRAYS A AND B, I.E. A(1),B(1), A(2),B(2),
C ...A(N),B(N).
C THE DATA MAY ALTERNATIVELY BE STORED IN A SINGLE
C COMPLEX ARRAY A, THEN THE MAGNITUDE OF ISN CHANGED TO
C TWO TO GIVE THE CORRECT INDEXING INCREMENT AND A(2)
C USED TO PASS THE INITIAL ADDRESS FOR THE SEQUENCE OF
C IMAGINARY VALUES,E.G.
C CALL FFT(A,A(2),N,2)
C CALL REALTR(A,A(2),N,2)
C IN THIS CASE, THE COSINE AND SINE COEFFICIENTS
C ALTERNATE IN A.
C
c DIMENSION A(1),B(1)
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 A,B
DIMENSION A(*),B(*)
IF(N .LE. 1) RETURN
INC=ISN
IF(INC.LT.0) INC=-INC
NK = N * INC + 2
NH = NK / 2
SD = 3.1415926535898D0/(2.D0*DFLOAT(N))
CD = 2.D0 * DSIN(SD)**2
SD = DSIN(SD+SD)
SN = 0.D0
IF(ISN .GT. 0) GO TO 10
CN = -1.D0
SD = -SD
GO TO 20
10 CN = 1.D0
A(NK-1) = A(1)
B(NK-1) = B(1)
20 DO 30 J=1,NH,INC
K = NK - J
AA = A(J) + A(K)
AB = A(J) - A(K)
BA = B(J) + B(K)
BB = B(J) - B(K)
XX = CN * BA + SN * AB
YY = SN * BA - CN * AB
B(K) = YY - BB
B(J) = YY + BB
A(K) = AA - XX
A(J) = AA + XX
AA = CN - (CD * CN + SD * SN)
SN = (SD * CN - CD * SN) + SN
30 CN = AA
C
RETURN
END
SUBROUTINE DFFT(A,B,NTOT,N,NSPAN,ISN,IERR)
C FFT IS A SINGLE PRECISION VERSION OF SINGLETON'S FFT
C PROCEDURE. ALL INTEGERS ARE 32 BITS. ALL FLOATING POINT
C VARIABLES ARE 32 BITS. FFT IS INTENDED FOR USE ON THE
C APOLLO AT SIO. IT WAS ORIGINALLY WRITTEN FOR THE PRIME
C AT SIO.
C MULTIVARIATE COMPLEX FOURIER TRANSFORM, COMPUTED IN PLACE
C USING MIXED-RADIX FAST FOURIER TRANSFORM ALGORITHM.
C BY R. C. SINGLETON, STANFORD RESEARCH INSTITUTE, SEPT. 1968
C ARRAYS A AND B ORIGINALLY HOLD THE REAL AND IMAGINARY
C COMPONENTS OF THE DATA, AND RETURN THE REAL AND
C IMAGINARY COMPONENTS OF THE RESULTING FOURIER COEFFICIENTS.
C MULTIVARIATE DATA IS INDEXED ACCORDING TO THE FORTRAN
C ARRAY ELEMENT SUCCESSOR FUNCTION, WITHOUT LIMIT
C ON THE NUMBER OF IMPLIED MULTIPLE SUBSCRIPTS.
C THE SUBROUTINE IS CALLED ONCE FOR EACH VARIATE.
C THE CALLS FOR A MULTIVARIATE TRANSFORM MAY BE IN ANY ORDER.
C NTOT IS THE TOTAL NUMBER OF COMPLEX DATA VALUES.
C N IS THE DIMENSION OF THE CURRENT VARIABLE.
C NSPAN/N IS THE SPACING OF CONSECUTIVE DATA VALUES
C WHILE INDEXING THE CURRENT VARIABLE.
C THE INTEGER IERR IS AN ERROR RETURN INDICATOR. IT IS NORMALLY ZERO, BUT IS
C SET TO 1 IF THE NUMBER OF TERMS CANNOT BE FACTORED IN THE SPACE AVAILABLE. IF
C IT IS PERMISSIBLE THE APPROPRIATE ACTION AT THIS STAGE IS TO ENTER FFT
C AGAIN AFTER HAVING REDUCED THE LENGTH OF THE SERIES BY ONE TERM
C THE SIGN OF ISN DETERMINES THE SIGN OF THE COMPLEX
C EXPONENTIAL, AND THE MAGNITUDE OF ISN IS NORMALLY ONE.
C A TRI-VARIATE TRANSFORM WITH A(N1,N2,N3), B(N1,N2,N3)
C IS COMPUTED BY
C CALL FFT(A,B,N1*N2*N3,N1,N1,1)
C CALL FFT(A,B,N1*N2*N3,N2,N1*N2,1)
C CALL FFT(A,B,N1*N2*N3,N3,N1*N2*N3,1)
C FOR A SINGLE-VARIATE TRANSFORM,
C NTOT = N = NSPAN = (NUMBER OF COMPLEX DATA VALUES), E.G.
C CALL FFT(A,B,N,N,N,1)
C WITH MOST FORTRAN COMPILERS THE DATA CAN ALTERNATIVELY BE
C STORED IN A SINGLE COMPLEX ARRAY A, THEN THE MAGNITUDE OF ISN
C CHANGED TO TWO TO GIVE THE CORRECT INDEXING INCREMENT AND A(2)
C USED TO PASS THE INITIAL ADDRESS FOR THE SEQUENCE OF IMAGINARY
C VALUES, E.G.
C CALL FFT(A,A(2),NTOT,N,NSPAN,2)
C ARRAYS AT(MAXF), CK(MAXF), BT(MAXF), SK(MAXF), AND NP(MAXP)
C ARE USED FOR TEMPORARY STORAGE. IF THE AVAILABLE STORAGE
C IS INSUFFICIENT, THE PROGRAM IS TERMINATED BY THE ERROR RETURN OPTION
C MAXF MUST BE .GE. THE MAXIMUM PRIME FACTOR OF N.
C MAXP MUST BE .GT. THE NUMBER OF PRIME FACTORS OF N.
C IN ADDITION, IF THE SQUARE-FREE PORTION K OF N HAS TWO OR
C MORE PRIME FACTORS, THEN MAXP MUST BE .GE. K-1.
C ARRAY STORAGE IN NFAC FOR A MAXIMUM OF 11 PRIME FACTORS OF N.
C IF N HAS MORE THAN ONE SQUARE-FREE FACTOR, THE PRODUCT OF THE
C SQUARE-FREE FACTORS MUST BE .LE. 210. (2**5*7=210)
c DIMENSION A(1),B(1)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION A(*),B(*)
DIMENSION NFAC(11),NP(209)
C ARRAY STORAGE FOR MAXIMUM PRIME FACTOR OF 23
DIMENSION AT(23),CK(23),BT(23),SK(23)
EQUIVALENCE (I,II)
C THE FOLLOWING TWO CONSTANTS SHOULD AGREE WITH THE ARRAY DIMENSIONS.
MAXF=23
MAXP=209
IERR=0
IF(N .LT. 2) RETURN
INC=ISN
C72=0.30901699437494D0
S72=0.95105651629515D0
S120=0.86602540378443D0
RAD=6.2831853071796D0
IF(ISN .GE. 0) GO TO 10
S72=-S72
S120=-S120
RAD=-RAD
INC=-INC
10 NT=INC*NTOT
KS=INC*NSPAN
KSPAN=KS
NN=NT-INC
JC=KS/N
RADF=RAD*(DFLOAT(JC)*0.5D0)
I=0
JF=0
C DETERMINE THE FACTORS OF N
M=0
K=N
GO TO 20
15 M=M+1
NFAC(M)=4
K=K/16
20 IF(K-(K/16)*16 .EQ. 0) GO TO 15
J=3
JJ=9
GO TO 30
25 M=M+1
NFAC(M)=J
K=K/JJ
30 IF(MOD(K,JJ) .EQ. 0) GO TO 25
J=J+2
JJ=J**2
IF(JJ .LE. K) GO TO 30
IF(K .GT. 4) GO TO 40
KT=M
NFAC(M+1)=K
IF(K .NE. 1) M=M+1
GO TO 80
40 IF(K-(K/4)*4 .NE. 0) GO TO 50
M=M+1
NFAC(M)=2
K=K/4
50 KT=M
J=2
60 IF(MOD(K,J) .NE. 0) GO TO 70
M=M+1
NFAC(M)=J
K=K/J
70 J=((J+1)/2)*2+1
IF(J .LE. K) GO TO 60
80 IF(KT .EQ. 0) GO TO 100
J=KT
90 M=M+1
NFAC(M)=NFAC(J)
J=J-1
IF(J .NE. 0) GO TO 90
C COMPUTE FOURIER TRANSFORM
100 SD=RADF/DFLOAT(KSPAN)
CD=2.D0*DSIN(SD)**2
SD=DSIN(SD+SD)
KK=1
I=I+1
IF(NFAC(I) .NE. 2) GO TO 400
C TRANSFORM FOR FACTOR OF 2 (INCLUDING ROTATION FACTOR)
KSPAN=KSPAN/2
K1=KSPAN+2
210 K2=KK+KSPAN
AK=A(K2)
BK=B(K2)
A(K2)=A(KK)-AK
B(K2)=B(KK)-BK
A(KK)=A(KK)+AK
B(KK)=B(KK)+BK
KK=K2+KSPAN
IF(KK .LE. NN) GO TO 210
KK=KK-NN
IF(KK .LE. JC) GO TO 210
IF(KK .GT. KSPAN) GO TO 800
220 C1=1.D0-CD
S1=SD
230 K2=KK+KSPAN
AK=A(KK)-A(K2)
BK=B(KK)-B(K2)
A(KK)=A(KK)+A(K2)
B(KK)=B(KK)+B(K2)
A(K2)=C1*AK-S1*BK
B(K2)=S1*AK+C1*BK
KK=K2+KSPAN
IF(KK .LT. NT) GO TO 230
K2=KK-NT
C1=-C1
KK=K1-K2
IF(KK .GT. K2) GO TO 230
AK=CD*C1+SD*S1
S1=(SD*C1-CD*S1)+S1
C1=C1-AK
KK=KK+JC
IF(KK .LT. K2) GO TO 230
K1=K1+INC+INC
KK=(K1-KSPAN)/2+JC
IF(KK .LE. JC+JC) GO TO 220
GO TO 100
C TRANSFORM FOR FACTOR OF 3 (OPTIONAL CODE)
320 K1=KK+KSPAN
K2=K1+KSPAN
AK=A(KK)
BK=B(KK)
AJ=A(K1)+A(K2)
BJ=B(K1)+B(K2)
A(KK)=AK+AJ
B(KK)=BK+BJ
AK=-0.5D0*AJ+AK
BK=-0.5D0*BJ+BK
AJ=(A(K1)-A(K2))*S120
BJ=(B(K1)-B(K2))*S120
A(K1)=AK-BJ
B(K1)=BK+AJ
A(K2)=AK+BJ
B(K2)=BK-AJ
KK=K2+KSPAN
IF(KK .LT. NN) GO TO 320
KK=KK-NN
IF(KK .LE. KSPAN) GO TO 320
GO TO 700
C TRANSFORM FOR FACTOR OF 4
400 IF(NFAC(I) .NE. 4) GO TO 600
KSPNN=KSPAN
KSPAN=KSPAN/4
410 C1=1.D0
S1=0.D0
420 K1=KK+KSPAN
K2=K1+KSPAN
K3=K2+KSPAN
AKP=A(KK)+A(K2)
AKM=A(KK)-A(K2)
AJP=A(K1)+A(K3)
AJM=A(K1)-A(K3)
A(KK)=AKP+AJP
AJP=AKP-AJP
BKP=B(KK)+B(K2)
BKM=B(KK)-B(K2)
BJP=B(K1)+B(K3)
BJM=B(K1)-B(K3)
B(KK)=BKP+BJP
BJP=BKP-BJP
IF(ISN .LT. 0) GO TO 450
AKP=AKM-BJM
AKM=AKM+BJM
BKP=BKM+AJM
BKM=BKM-AJM
IF(S1 .EQ. 0.D0) GO TO 460
430 A(K1)=AKP*C1-BKP*S1
B(K1)=AKP*S1+BKP*C1
A(K2)=AJP*C2-BJP*S2
B(K2)=AJP*S2+BJP*C2
A(K3)=AKM*C3-BKM*S3
B(K3)=AKM*S3+BKM*C3
KK=K3+KSPAN
IF(KK .LE. NT) GO TO 420
440 C2=CD*C1+SD*S1
S1=(SD*C1-CD*S1)+S1
C1=C1-C2
C2=C1**2-S1**2
S2=2.D0*C1*S1
C3=C2*C1-S2*S1
S3=C2*S1+S2*C1
KK=KK-NT+JC
IF(KK .LE. KSPAN) GO TO 420
KK=KK-KSPAN+INC
IF(KK .LE. JC) GO TO 410
IF(KSPAN .EQ. JC) GO TO 800
GO TO 100
450 AKP=AKM+BJM
AKM=AKM-BJM
BKP=BKM-AJM
BKM=BKM+AJM
IF(S1 .NE. 0.D0) GO TO 430
460 A(K1)=AKP
B(K1)=BKP
A(K2)=AJP
B(K2)=BJP
A(K3)=AKM
B(K3)=BKM
KK=K3+KSPAN
IF(KK .LE. NT) GO TO 420
GO TO 440
C TRANSFORM FOR FACTOR OF 5 (OPTIONAL CODE)
510 C2=C72**2-S72**2
S2=2.D0*C72*S72
520 K1=KK+KSPAN
K2=K1+KSPAN
K3=K2+KSPAN
K4=K3+KSPAN
AKP=A(K1)+A(K4)
AKM=A(K1)-A(K4)
BKP=B(K1)+B(K4)
BKM=B(K1)-B(K4)
AJP=A(K2)+A(K3)
AJM=A(K2)-A(K3)
BJP=B(K2)+B(K3)
BJM=B(K2)-B(K3)
AA=A(KK)
BB=B(KK)
A(KK)=AA+AKP+AJP
B(KK)=BB+BKP+BJP
AK=AKP*C72+AJP*C2+AA
BK=BKP*C72+BJP*C2+BB
AJ=AKM*S72+AJM*S2
BJ=BKM*S72+BJM*S2
A(K1)=AK-BJ
A(K4)=AK+BJ
B(K1)=BK+AJ
B(K4)=BK-AJ
AK=AKP*C2+AJP*C72+AA
BK=BKP*C2+BJP*C72+BB
AJ=AKM*S2-AJM*S72
BJ=BKM*S2-BJM*S72
A(K2)=AK-BJ
A(K3)=AK+BJ
B(K2)=BK+AJ
B(K3)=BK-AJ
KK=K4+KSPAN
IF(KK .LT. NN) GO TO 520
KK=KK-NN
IF(KK .LE. KSPAN) GO TO 520
GO TO 700
C TRANSFORM FOR ODD FACTORS
600 K=NFAC(I)
KSPNN=KSPAN
KSPAN=KSPAN/K
IF(K .EQ. 3) GO TO 320
IF(K .EQ. 5) GO TO 510
IF(K .EQ. JF) GO TO 640
JF=K
S1=RAD/DFLOAT(K)
C1=DCOS(S1)
S1=DSIN(S1)
IF(JF .GT. MAXF) GO TO 998
CK(JF)=1.D0
SK(JF)=0.D0
J=1
630 CK(J)=CK(K)*C1+SK(K)*S1
SK(J)=CK(K)*S1-SK(K)*C1
K=K-1
CK(K)=CK(J)
SK(K)=-SK(J)
J=J+1
IF(J .LT. K) GO TO 630
640 K1=KK
K2=KK+KSPNN
AA=A(KK)
BB=B(KK)
AK=AA
BK=BB
J=1
K1=K1+KSPAN
650 K2=K2-KSPAN
J=J+1
AT(J)=A(K1)+A(K2)
AK=AT(J)+AK
BT(J)=B(K1)+B(K2)
BK=BT(J)+BK
J=J+1
AT(J)=A(K1)-A(K2)
BT(J)=B(K1)-B(K2)
K1=K1+KSPAN
IF(K1 .LT. K2) GO TO 650
A(KK)=AK
B(KK)=BK
K1=KK
K2=KK+KSPNN
J=1
660 K1=K1+KSPAN
K2=K2-KSPAN
JJ=J
AK=AA
BK=BB
AJ=0.D0
BJ=0.D0
K=1
670 K=K+1
AK=AT(K)*CK(JJ)+AK
BK=BT(K)*CK(JJ)+BK
K=K+1
AJ=AT(K)*SK(JJ)+AJ
BJ=BT(K)*SK(JJ)+BJ
JJ=JJ+J
IF(JJ .GT. JF) JJ=JJ-JF
IF(K .LT. JF) GO TO 670
K=JF-J
A(K1)=AK-BJ
B(K1)=BK+AJ
A(K2)=AK+BJ
B(K2)=BK-AJ
J=J+1
IF(J .LT. K) GO TO 660
KK=KK+KSPNN
IF(KK .LE. NN) GO TO 640
KK=KK-NN
IF(KK .LE. KSPAN) GO TO 640
C MULTIPLY BY ROTATION FACTOR (EXCEPT FOR FACTORS OF 2 AND 4)
700 IF(I .EQ. M) GO TO 800
KK=JC+1
710 C2=1.D0-CD
S1=SD
720 C1=C2
S2=S1
KK=KK+KSPAN
730 AK=A(KK)
A(KK)=C2*AK-S2*B(KK)
B(KK)=S2*AK+C2*B(KK)
KK=KK+KSPNN
IF(KK .LE. NT) GO TO 730
AK=S1*S2
S2=S1*C2+C1*S2
C2=C1*C2-AK
KK=KK-NT+KSPAN
IF(KK .LE. KSPNN) GO TO 730
C2=C1-(CD*C1+SD*S1)
S1=S1+(SD*C1-CD*S1)
KK=KK-KSPNN+JC
IF(KK .LE. KSPAN) GO TO 720
KK=KK-KSPAN+JC+INC
IF(KK .LE. JC+JC) GO TO 710
GO TO 100
C PERMUTE THE RESULTS TO NORMAL ORDER---DONE IN TWO STAGES
C PERMUTATION FOR SQUARE FACTORS OF N
800 NP(1)=KS
IF(KT .EQ. 0) GO TO 890
K=KT+KT+1
IF(M .LT. K) K=K-1
J=1
NP(K+1)=JC
810 NP(J+1)=NP(J)/NFAC(J)
NP(K)=NP(K+1)*NFAC(J)
J=J+1
K=K-1
IF(J .LT. K) GO TO 810
K3=NP(K+1)
KSPAN=NP(2)
KK=JC+1
K2=KSPAN+1
J=1
IF(N .NE. NTOT) GO TO 850
C PERMUTATION FOR SINGLE-VARIATE TRANSFORM (OPTIONAL CODE)
820 AK=A(KK)
A(KK)=A(K2)
A(K2)=AK
BK=B(KK)
B(KK)=B(K2)
B(K2)=BK
KK=KK+INC
K2=KSPAN+K2
IF(K2 .LT. KS) GO TO 820
830 K2=K2-NP(J)
J=J+1
K2=NP(J+1)+K2
IF(K2 .GT. NP(J)) GO TO 830
J=1
840 IF(KK .LT. K2) GO TO 820
KK=KK+INC
K2=KSPAN+K2
IF(K2 .LT. KS) GO TO 840
IF(KK .LT. KS) GO TO 830
JC=K3
GO TO 890
C PERMUTATION FOR MULTIVARIATE TRANSFORM
850 K=KK+JC
860 AK=A(KK)
A(KK)=A(K2)
A(K2)=AK
BK=B(KK)
B(KK)=B(K2)
B(K2)=BK
KK=KK+INC
K2=K2+INC
IF(KK .LT. K) GO TO 860
KK=KK+KS-JC
K2=K2+KS-JC
IF(KK .LT. NT) GO TO 850
K2=K2-NT+KSPAN
KK=KK-NT+JC
IF(K2 .LT. KS) GO TO 850
870 K2=K2-NP(J)
J=J+1
K2=NP(J+1)+K2
IF(K2 .GT. NP(J)) GO TO 870
J=1
880 IF(KK .LT. K2) GO TO 850
KK=KK+JC
K2=KSPAN+K2
IF(K2 .LT. KS) GO TO 880
IF(KK .LT. KS) GO TO 870
JC=K3
890 IF(2*KT+1 .GE. M) RETURN
KSPNN=NP(KT+1)
C PERMUTATION FOR SQUARE-FREE FACTORS OF N
J=M-KT
NFAC(J+1)=1
900 NFAC(J)=NFAC(J)*NFAC(J+1)
J=J-1
IF(J .NE. KT) GO TO 900
KT=KT+1
NN=NFAC(KT)-1
IF(NN .GT. MAXP) GO TO 998
JJ=0
J=0
GO TO 906
902 JJ=JJ-K2
K2=KK
K=K+1
KK=NFAC(K)
904 JJ=KK+JJ
IF(JJ .GE. K2) GO TO 902
NP(J)=JJ
906 K2=NFAC(KT)
K=KT+1
KK=NFAC(K)
J=J+1
IF(J .LE. NN) GO TO 904
C DETERMINE THE PERMUTATION CYCLES OF LENGTH GREATER THAN 1
J=0
GO TO 914
910 K=KK
KK=NP(K)
NP(K)=-KK
IF(KK .NE. J) GO TO 910
K3=KK
914 J=J+1
KK=NP(J)
IF(KK .LT. 0) GO TO 914
IF(KK .NE. J) GO TO 910
NP(J)=-J
IF(J .NE. NN) GO TO 914
MAXF=INC*MAXF
C REORDER A AND B, FOLLOWING THE PERMUTATION CYCLES
GO TO 950
924 J=J-1
IF(NP(J) .LT. 0) GO TO 924
JJ=JC
926 KSPAN=JJ
IF(JJ .GT. MAXF) KSPAN=MAXF
JJ=JJ-KSPAN
K=NP(J)
KK=JC*K+II+JJ
K1=KK+KSPAN
K2=0
928 K2=K2+1
AT(K2)=A(K1)
BT(K2)=B(K1)
K1=K1-INC
IF(K1 .NE. KK) GO TO 928
932 K1=KK+KSPAN
K2=K1-JC*(K+NP(K))
K=-NP(K)
936 A(K1)=A(K2)
B(K1)=B(K2)
K1=K1-INC
K2=K2-INC
IF(K1 .NE. KK) GO TO 936
KK=K2
IF(K .NE. J) GO TO 932
K1=KK+KSPAN
K2=0
940 K2=K2+1
A(K1)=AT(K2)
B(K1)=BT(K2)
K1=K1-INC
IF(K1 .NE. KK) GO TO 940
IF(JJ .NE. 0) GO TO 926
IF(J .NE. 1) GO TO 924
950 J=K3+1
NT=NT-KSPNN
II=NT-INC+1
IF(NT .GE. 0) GO TO 924
RETURN
C ERROR FINISH, INSUFFICIENT ARRAY STORAGE
998 IERR=1
RETURN
END