-
Notifications
You must be signed in to change notification settings - Fork 0
/
436.hpp
78 lines (62 loc) · 2.12 KB
/
436.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#ifndef LEETCODE_436_HPP
#define LEETCODE_436_HPP
#include <iostream>
#include <queue>
#include <algorithm>
#include <vector>
#include <unordered_map>
#include <unordered_set>
#include <set>
#include <numeric>
#include <stack>
#include <string>
#include <map>
#include "../common/leetcode.hpp"
using namespace std;
/*
Given a set of intervals, for each of the interval i,
check if there exists an interval j whose start point is bigger than
or equal to the end point of the interval i,
which can be called that j is on the "right" of i.
For any interval i, you need to store the minimum interval j's index,
which means that the interval j has the minimum start point to build
the "right" relationship for interval i.
If the interval j doesn't exist, store -1 for the interval i.
Finally, you need output the stored value of each interval as an array.
Note:
You may assume the interval's end point is always bigger than its start point.
You may assume none of these intervals have the same start point.
Example 1:
Input: [ [1,2] ]
Output: [-1]
Explanation: There is only one interval in the collection, so it outputs -1.
Example 2:
Input: [ [3,4], [2,3], [1,2] ]
Output: [-1, 0, 1]
Explanation: There is no satisfied "right" interval for [3,4].
For [2,3], the interval [3,4] has minimum-"right" start point;
For [1,2], the interval [2,3] has minimum-"right" start point.
Example 3:
Input: [ [1,4], [2,3], [3,4] ]
Output: [-1, 2, -1]
Explanation: There is no satisfied "right" interval for [1,4] and [3,4].
For [2,3], the interval [3,4] has minimum-"right" start point.
*/
class Solution {
public:
vector<int> findRightInterval(vector<Interval> &intervals) {
map<int, int> s2idx;
for (int i = 0; i < intervals.size(); ++i) {
if (s2idx.count(intervals[i].start) == 0) {
s2idx[intervals[i].start] = i;
}
}
vector<int> res(intervals.size());
for (int j = 0; j < res.size(); ++j) {
auto cur = s2idx.lower_bound(intervals[j].end);
res[j] = cur == s2idx.end() ? -1 : cur->second;
}
return res;
}
};
#endif //LEETCODE_436_HPP