-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaql.py
79 lines (61 loc) · 2.39 KB
/
maql.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import numpy as np
import random
from clean_env import clean_env2
import pandas as pd
import matplotlib.pyplot as plt
class MAQLearning():
def __init__(self, env, discount=0.8, n_iter=1000):
self.env = env
self.S = env.observation_space.n
self.A = env.action_space.n
self.agent_num = self.env.env.N_agent
self.max_iter = int(n_iter)
self.discount = discount
self.Q = np.zeros((self.agent_num, self.S * self.S, self.A))
def run(self):
reward_list = []
for n in range(0, self.max_iter):
s = self.env.reset()
r_total = 0
while True:
if n > 500:
self.env.render()
a_list = []
for i in range(self.agent_num):
pn = np.random.random()
s_agent = s[i] + s[(i + 1) % 2] * self.S
if pn < 0.95: # n / self.max_iter * 2:
a = self.Q[i][s_agent, :].argmax()
else:
a = self.env.action_space.sample()
a_list.append(a)
s_new, r, done, _ = self.env.step(a_list)
r -= 1
r_total += r
for i in range(self.agent_num):
s_agent = s[i] + s[(i + 1) % 2] * self.S
s_agent_new = s_new[i] + s_new[(i + 1) % 2] * self.S
delta = r + self.discount * \
self.Q[i][s_agent_new, :].max() - \
self.Q[i][s_agent, a_list[i]]
dQ = 0.5 * delta
self.Q[i][s_agent, a_list[i]
] = self.Q[i][s_agent, a_list[i]] + dQ
# print(s, a_list, r, s_new, done)
s = s_new
if done:
break
reward_list.append(r_total)
print('--------------------------------------')
print('episode %d, reward: %s' % (n, r_total))
print('--------------------------------------')
return reward_list
if __name__ == '__main__':
size = 9
agent = 2
max_iter = 1000
env = clean_env2(size=size, agent=agent, max_iter=max_iter)
test = MAQLearning(env)
reward_list = test.run()
plt.plot(reward_list)
plt.show()