Skip to content

Latest commit

 

History

History
55 lines (34 loc) · 1.17 KB

README.md

File metadata and controls

55 lines (34 loc) · 1.17 KB

atari-agent

Tensorflow implementation of DQN

This implementation contains:

DQN

  1. Deep Q-network and Q-learning
  2. Experience replay memory
    • to reduce the correlations between consecutive updates
  3. Network for Q-learning targets are fixed for intervals
    • to reduce the correlations between target and predicted Q-values
  4. Double DQN
  5. Dueling DQN

Requirements

Usage

First, install prerequisites with:

$ pip install tqdm gym[all]

To train a model for Breakout:

$ python main.py

or

// Disable game window. Be able to improve training effect with GPU.
$ python main.py --render=False

Results

GPU: GTX 1060 3G

TBD

References

License

MIT License.