-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolve-osqp
188 lines (158 loc) · 6.17 KB
/
solve-osqp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#include "OsqpEigen/OsqpEigen.h"
#include <iostream>
#include <fstream>
#include <Eigen/Dense>
#include <Eigen/Sparse>
void saveMatrixToFile(const Eigen::Matrix<c_float, Eigen::Dynamic, Eigen::Dynamic>& matrix, std::string filename) {
std::ofstream outFile(filename);
if (!outFile.is_open()) {
std::cerr << "Error opening file: " << filename << std::endl;
return;}
for (int i = 0; i < matrix.rows(); ++i) {
for (int j = 0; j < matrix.cols(); ++j) {
outFile << matrix(i, j) << " "; }
outFile << std::endl;}
outFile.close();
std::cout << "Matrix saved to file: " << filename << std::endl;
}
int main() {
std::string file_name = "data1/";
//Heissian Matrix
Eigen::SparseMatrix< c_float > H(721, 721);
std::ifstream hessianFile(file_name+"h2.txt");
if (!hessianFile.is_open()) {
std::cerr << "Error opening hessian.txt" << std::endl;
return 1;
}
int rows, cols, nnz;
hessianFile >> rows >> cols >> nnz;
H.resize(rows, cols);
std::vector<Eigen::Triplet<c_float>> triplets;
for (int i = 0; i < nnz; i++) {
int row, col;
c_float value;
hessianFile >> row >> col >> value;
triplets.push_back(Eigen::Triplet<c_float>(row - 1, col - 1, value));
}
H.setFromTriplets(triplets.begin(), triplets.end());
hessianFile.close();
// f vector
Eigen::Matrix<c_float, 721, 1> fval;
std::ifstream fvalFile(file_name+"f2.txt");
if (!fvalFile.is_open()) {
std::cerr << "Error opening fval.txt" << std::endl;
return 1;
}
for (int i = 0; i < rows; i++) {
c_float value;
if (!(fvalFile >> value)) {
std::cerr << "Error reading value from file" << std::endl;
return 1;
}
fval(i, 0) = value;
}
fvalFile.close();
//upperbound
//ub1 0 < diagnal matrix*x < +infinity
Eigen::VectorXd ub1 = Eigen::VectorXd::Constant(721, std::numeric_limits<c_float>::infinity());
//ub2 -infinity < Ac*x < dc
std::ifstream infile(file_name+"dc2.txt");
if (!infile.is_open()) {
std::cerr << "Error: Unable to open file." << std::endl;
return 1;
}
std::vector<c_float> values;
c_float value;
while (infile >> value) {
values.push_back(value);
}
infile.close();
Eigen::VectorXd ub2(values.size());
for (int i = 0; i < values.size(); ++i) {
ub2(i) = values[i];
}
//concat ub1,ub2
Eigen::VectorXd ub(ub1.size() + ub2.size());
ub << ub1, ub2;
// lowerbound
Eigen::VectorXd lb1 = Eigen::VectorXd::Constant(721, 0);
Eigen::VectorXd lb2 = Eigen::VectorXd::Constant(dc.size(), -std::numeric_limits<double>::infinity());
Eigen::VectorXd lb(lb1.size() + lb2.size());
lb << lb1, lb2;
//set Ac matrix
Eigen::SparseMatrix<c_float> anotherSparseMatrix;
std::ifstream sparseMatrixFile(file_name+"Ac2.txt");
if (!sparseMatrixFile.is_open()) {
std::cerr << "Error opening sparse_matrix.txt" << std::endl;
return 1;
}
int rows1, cols1;
sparseMatrixFile >> rows1 >> cols1 >> nnz;
std::vector<Eigen::Triplet<c_float>> triplets1;
triplets1.reserve(nnz);
for (int i = 0; i < nnz; ++i) {
int row, col;
c_float value;
sparseMatrixFile >> row >> col >> value;
triplets1.push_back(Eigen::Triplet<c_float>(row - 1, col - 1, value));
}
sparseMatrixFile.close();
anotherSparseMatrix.resize(rows1, cols1);
anotherSparseMatrix.setFromTriplets(triplets1.begin(), triplets1.end());
//set identity matrix
Eigen::MatrixXd denseMatrix = Eigen::MatrixXd::Identity(721, 721);
Eigen::SparseMatrix<c_float> diagonalMatrix = denseMatrix.sparseView();
// join constrain matrix
Eigen::SparseMatrix<double> MATRIX_JOIN;
MATRIX_JOIN.resize(diagonalMatrix.rows() + anotherSparseMatrix.rows(), diagonalMatrix.cols());
MATRIX_JOIN.setZero();
std::vector<Eigen::Triplet<double>> tripletList;
tripletList.reserve(diagonalMatrix.nonZeros() + anotherSparseMatrix.nonZeros());
for (int k = 0; k < diagonalMatrix.outerSize(); ++k)
{ for (Eigen::SparseMatrix<double>::InnerIterator it(diagonalMatrix, k); it; ++it)
{tripletList.push_back(Eigen::Triplet<double>(it.row(), it.col(), it.value()));}}
for (int k = 0; k < anotherSparseMatrix.outerSize(); ++k)
{for (Eigen::SparseMatrix<double>::InnerIterator it(anotherSparseMatrix, k); it; ++it)
{tripletList.push_back(Eigen::Triplet<double>(it.row()+721, it.col(), it.value()));}}
MATRIX_JOIN.setFromTriplets(tripletList.begin(), tripletList.end());
//Solver
OsqpEigen::Solver solver;
solver.data()->setNumberOfVariables(static_cast<int>(H.rows()));
solver.data()->setNumberOfConstraints(static_cast<int>(H.rows()+Ac.rows()));
solver.data()->setLinearConstraintsMatrix(MATRIX_JOIN);
solver.data()->setHessianMatrix(H);
solver.data()->setGradient(f);
solver.data()->setLowerBound(lb);
solver.data()->setUpperBound(ub);
solver.settings()->setRho(.5);
solver.settings()->setMaxIteration(8000);
solver.settings()->setWarmStart(true);
solver.settings()->setVerbosity(true);
solver.settings()->setAdaptiveRho(true);
solver.settings()->setLinearSystemSolver(0);
solver.settings()->setScaling(1.5);
solver.settings()->setAbsoluteTolerance(1.0e-3);
solver.settings()->setRelativeTolerance(1.0e-3);
solver.settings()->setAlpha(1.6);
solver.settings()->setPolishRefineIter(6);
solver.settings()->setAdaptiveRhoInterval(25);
if (!solver.initSolver()) {
std::cerr << "Error initializing solver." << std::endl;
return 1;
}
if (solver.solveProblem() != OsqpEigen::ErrorExitFlag::NoError)
return 1;
VectorXd solution = solver.getSolution();
std::cout << "Solution:" << std::endl;
std::cout << solution << std::endl;
int zeroCount = 0;
for (int i = 0; i < solution.rows(); ++i) {
if (solution(i) < 0) {
solution(i) = 0;
zeroCount++;
}
}
std::cout << "Number of zero elements in solution: " << zeroCount << std::endl;
saveMatrixToFile(solution, "solution2.txt");
return 0;
}