-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
188 lines (149 loc) · 8.44 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import argparse
import datetime
import time
import json
import random
import torch
import numpy as np
import utils
from dataloaders_train import get_train_dataloader
from models import get_model
from schedulers import get_scheduler
from optimizers import get_optimizer
from losses import get_loss
from engine import *
def get_args_parser():
parser = argparse.ArgumentParser('PedXNet Deep-Learning Train script', add_help=False)
# Dataset parameters
parser.add_argument('--dataset', default="amc", type=str, help='dataset name')
parser.add_argument('--train-batch-size', default=72, type=int)
parser.add_argument('--valid-batch-size', default=72, type=int)
parser.add_argument('--train-num-workers', default=10, type=int)
parser.add_argument('--valid-num-workers', default=10, type=int)
# Model parameters
parser.add_argument('--model', default='Sequence_SkipHidden_Unet_ALL', type=str, help='model name')
parser.add_argument('--loss', default='Sequence_SkipHidden_Unet_loss', type=str, help='loss name')
parser.add_argument('--method', default='', help='multi-task weighting name')
# Optimizer parameters
parser.add_argument('--optimizer', default='adamw', type=str, metavar='OPTIMIZER', help='Optimizer (default: "AdamW"')
# Learning rate and schedule and Epoch parameters
parser.add_argument('--scheduler', default='poly_lr', type=str, metavar='scheduler', help='scheduler (default: "poly_learning_rate"')
parser.add_argument('--epochs', default=1000, type=int, help='Upstream 1000 epochs, Downstream 500 epochs')
parser.add_argument('--warmup-epochs', default=10, type=int, metavar='N', help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--lr', default=5e-4, type=float, metavar='LR', help='learning rate (default: 5e-4)')
parser.add_argument('--min-lr', default=1e-5, type=float, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
# DataParrel or Single GPU train
parser.add_argument('--multi-gpu-mode', default='DataParallel', choices=['Single', 'DataParallel'], type=str, help='multi-gpu-mode')
parser.add_argument('--device', default='cuda', help='device to use for training / testing')
# Validation setting
parser.add_argument('--print-freq', default=10, type=int, metavar='N', help='print frequency (default: 10)')
parser.add_argument('--save-checkpoint-every', default=1, type=int, help='save the checkpoints every n epochs')
# Prediction and Save setting
parser.add_argument('--checkpoint-dir', default='', help='path where to save checkpoint or output')
parser.add_argument('--save-dir', default='', help='path where to prediction PNG save')
# Continue Training
parser.add_argument('--from-pretrained', default='', help='pre-trained from checkpoint')
parser.add_argument('--resume', default='', help='resume from checkpoint') # '' = None
# Memo
parser.add_argument('--memo', default='', help='memo for script')
return parser
# Fix random seeds for reproducibility
random_seed = 42
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(random_seed)
random.seed(random_seed)
def main(args):
start_epoch = 0
utils.print_args(args)
device = torch.device(args.device)
print("cpu == ", os.cpu_count())
# Dataloader
train_loader, valid_loader = get_train_dataloader(name=args.dataset, args=args)
# Model
model = get_model(name=args.model)
# Pretrained
if args.from_pretrained:
print("Loading... Pretrained")
checkpoint = torch.load(args.from_pretrained)
model.load_state_dict(checkpoint['model_state_dict'])
# Multi-GPU & CUDA
if args.multi_gpu_mode == 'DataParallel':
model = torch.nn.DataParallel(model)
model = model.to(device)
else :
model = model.to(device)
# Optimizer & LR Schedule & Loss
optimizer = get_optimizer(name=args.optimizer, model=model, lr=args.lr)
scheduler = get_scheduler(name=args.scheduler, optimizer=optimizer, warm_up_epoch=args.warmup_epochs, start_decay_epoch=args.epochs/10, total_epoch=args.epochs, min_lr=1e-6)
criterion = get_loss(name=args.loss)
# Resume
if args.resume:
print("Loading... Resume")
checkpoint = torch.load(args.resume, map_location='cpu')
checkpoint['model_state_dict'] = {k.replace('.module', ''):v for k,v in checkpoint['model_state_dict'].items()} # fix loading multi-gpu
model.load_state_dict(checkpoint['model_state_dict'])
start_epoch = checkpoint['epoch'] + 1
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
utils.fix_optimizer(optimizer)
# Etc traing setting
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
# Whole Loop Train & Valid
for epoch in range(start_epoch, args.epochs):
# Upstream
if args.model == 'Uptask_Sup_Classifier':
train_stats = train_Uptask_Sup(train_loader, model, criterion, optimizer, device, epoch)
print("Averaged train_stats: ", train_stats)
valid_stats = valid_Uptask_Sup(valid_loader, model, device, epoch)
print("Averaged valid_stats: ", valid_stats)
# Downstream
elif args.model == 'Downtask_General_Fracture' or args.model == 'Downtask_General_Fracture_ImageNet' or args.model == 'Downtask_General_Fracture_PedXNet_7Class' or args.model == 'Downtask_General_Fracture_PedXNet_30Class' or args.model == 'Downtask_General_Fracture_PedXNet_68Class':
train_stats = train_Downtask_General_Fracture(train_loader, model, criterion, optimizer, device, epoch)
print("Averaged train_stats: ", train_stats)
valid_stats = valid_Downtask_General_Fracture(valid_loader, model, device, epoch)
print("Averaged valid_stats: ", valid_stats)
elif args.model == 'Downtask_RSNA_Boneage':
train_stats = train_Downtask_RSNA_BAA(train_loader, model, criterion, optimizer, device, epoch)
print("Averaged train_stats: ", train_stats)
valid_stats = valid_Downtask_RSNA_BAA(valid_loader, model, device, epoch)
print("Averaged valid_stats: ", valid_stats)
else :
raise Exception('Error...! args.model')
# LR scheduler update
scheduler.step(epoch)
# Save checkpoint & Prediction png
if epoch % args.save_checkpoint_every == 0:
checkpoint_path = args.checkpoint_dir + '/epoch_' + str(epoch) + '_checkpoint.pth'
torch.save({
'model_state_dict': model.module.state_dict() if hasattr(model, 'module') else model.state_dict(), # Save only Single Gpu mode
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
# Log & Save
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'valid_{k}': v for k, v in valid_stats.items()},
'epoch': epoch}
with open(args.checkpoint_dir + "/log.txt", "a") as f:
f.write(json.dumps(log_stats) + "\n")
# Finish
total_time_str = str(datetime.timedelta(seconds=int(time.time()-start_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('PedXNet training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
# Make folder if not exist
os.makedirs(args.checkpoint_dir + "/args", mode=0o777, exist_ok=True)
os.makedirs(args.save_dir, mode=0o777, exist_ok=True)
# Save args to json
if not os.path.isfile(args.checkpoint_dir + "/args/args_" + datetime.datetime.now().strftime("%y%m%d_%H%M") + ".json"):
with open(args.checkpoint_dir + "/args/args_" + datetime.datetime.now().strftime("%y%m%d_%H%M") + ".json", "w") as f:
json.dump(args.__dict__, f, indent=2)
main(args)