diff --git a/chapters/ch8.tex b/chapters/ch8.tex index 6b7a516..3ab873e 100644 --- a/chapters/ch8.tex +++ b/chapters/ch8.tex @@ -65,8 +65,9 @@ \section{Vibrational Partition Function}% normal coordinates respectively. In solving the above Hamiltonian, the total energy becomes, \begin{equation*} - \varepsilon = \sum_{j=1}^{\alpha}{(n_j + \frac{1}{2})h \nu_j} - \quad\text{for}\quad n_j = 0, 1, 2, \ldots + \varepsilon = \sum_{j=1}^{\alpha}{\sum_{i=0}^{\infty}{(n_{j,i} + \frac{1}{2})h + \nu_{j}}} + \quad\text{for}\quad n_{j,i} = 0, 1, 2, \ldots \end{equation*} where, \begin{equation*} @@ -138,7 +139,13 @@ \subsection{Linear Molecules} q_{rot} = \frac{8 \pi^2 IkT}{\sigma h^2} = \frac{T}{\sigma \Theta_r}. \end{equation*} Once again $\sigma$ is the symmetry number which represents the number of -indistinguishable configurations a molecule has. +indistinguishable configurations a molecule has. The purpose of $\sigma$ is +important to mention here. Its meaning classically comes from the number of +different equivalent arrangements of the molecule that are identical over +specific rotations. In other words, The number of configurations of the atoms +that make the same structure will have rotations which show them to be +identical. This prevents their over-counting. In terms of quantum mechanics, the +particles are indistinguishable so the symmetry number is immediately required. \subsection{Non-Linear Molecules} Non-linear rigid bodies have at least two different diagonal moments of @@ -172,7 +179,7 @@ \subsubsection{Spherical Tops} v = \frac{4IkT}{\hbar^2} e^{-J^2 \hbar^{2}/2IkT}, \end{align*} Here, I note that the integral is directly analogous to that used to prove the -law of equipartition derived in Section\ref{sec:eoe}. Then, the final solution +law of equipartition derived in Section~\ref{sec:eoe}. Then, the final solution is \begin{equation*} q_{rot} = \frac{1}{\sigma} diff --git a/chapters/ch9.tex b/chapters/ch9.tex index 06c10e2..bc23d78 100644 --- a/chapters/ch9.tex +++ b/chapters/ch9.tex @@ -26,7 +26,7 @@ \section{Chemical Equilibrium in Terms of Partition Functions}% free energy is at a minimum. By the conservation of mass and the definition of equilibrium we know \begin{equation*} - \nu_C C + \nu_D D - \\nu_A A - \nu_B B = 0. + \nu_C C + \nu_D D - \nu_A A - \nu_B B = 0. \end{equation*} Taking the definition of the Helmholtz free energy as, \begin{equation*} @@ -34,7 +34,7 @@ \section{Chemical Equilibrium in Terms of Partition Functions}% \end{equation*} and using the fact that we are at constant $T$ and $V$, we get \begin{equation*} - \d{A} = \sum_{j}{\mu_j \d{N_{j}}} = {\left(\sum_{j}{\nu_j + \d{A} = \sum_{j}{\mu_j \d{N_{j}}} = {\left(\sum_{j}{\nu_j \sigma_j \mu_{j}}\right)}\d{\lambda}, \end{equation*} where $\sigma_j \nu_j \d{\lambda} = \d{N_{j}}$ with $\sigma_j$ being $1$ @@ -55,11 +55,12 @@ \section{Chemical Equilibrium in Terms of Partition Functions}% Using the previously derived relation, \begin{align*} \mu_A &= -kT {\left(\frac{\partial \ln{\Q}}{\partial N_{A}}\right)}_{N_j, V, - T} = -kT {\left(\partial \ln{\left(\sum_{i}^{A, B, C, D} - {\frac{q_{i}}{N_i !}}\right)} / - \partial N_A \right)} + T} + = -kT {\left(\partial \sum_{i}^{A, B, C, D} + {\ln{\left[\frac{q_{i}}{N_i !}}\right]} / \partial N_A + \right)} = -kT {\left(\partial \ln{\left(\frac{q_{A}}{N_A !}\right)} / - \partial N_A \right)}\\ + \partial N_A \right)}\\ &= -kT \partial(N_{A} \ln{q_{A}} - N_{A}\ln{N_{A}} + N_{A}) / \partial N_A = -kT {\left( N_A \ln{\left[\frac{q_A}{N_{A}}\right]} + N_A \right)} / \partial N_A \\ @@ -107,7 +108,7 @@ \section{Chemical Equilibrium in Terms of Partition Functions}% equilibrium constant $K_p (T)$, \begin{equation*} K_p(T) = \frac{p_{D}^{\nu_D}p_{C}^{\nu_C}}{p_{B}^{\nu_B}p_{A}^{\nu_A}} = - (kT)^{\sum_{j}{\nu_{j}}} K_c (T). + (kT)^{\sum_{j}{\sigma_j \nu_{j}}} K_c (T). \end{equation*} \section{Thermodynamic Tables}% @@ -117,7 +118,7 @@ \section{Thermodynamic Tables}% \begin{equation*} \mu(T,p) = \mu_0 (T) + kT\ln{p}. \end{equation*} -Using the fact that $\sum_{j}{\nu_j \mu_j} = 0$, we have +Using the fact that $\sum_{j}{\sigma_j \nu_j \mu_j} = 0$, we have \begin{align*} \sum_{j}{\sigma_j \nu_j kT\ln{p_{j}}} + \sum_{j}{\sigma_j \nu_j \mu_{0,j}(T)} &= 0\\ diff --git a/notes.pdf b/notes.pdf index cf58b7d..cf972ee 100644 Binary files a/notes.pdf and b/notes.pdf differ