forked from huang1225s/TAADA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackbone.py
371 lines (324 loc) · 12.8 KB
/
backbone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import numpy as np
import torch
import torch.nn as nn
import torchvision
from torchvision import models
from torch.autograd import Variable
import math
from HybridSN import HybridSN
# convnet without the last layer
class AlexNetFc(nn.Module):
def __init__(self):
super(AlexNetFc, self).__init__()
model_alexnet = models.alexnet(pretrained=True)
self.features = model_alexnet.features
self.classifier = nn.Sequential()
for i in range(6):
self.classifier.add_module("classifier"+str(i), model_alexnet.classifier[i])
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), 256*6*6)
x = self.classifier(x)
return x
class ResNet18Fc(nn.Module):
def __init__(self, in_channels):
super(ResNet18Fc, self).__init__()
model_resnet18 = models.resnet18(pretrained=False)
# self.conv1 = model_resnet18.conv1
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = model_resnet18.bn1
self.relu = model_resnet18.relu
self.maxpool = model_resnet18.maxpool
self.layer1 = model_resnet18.layer1
self.layer2 = model_resnet18.layer2
self.layer3 = model_resnet18.layer3
self.layer4 = model_resnet18.layer4
self.avgpool = model_resnet18.avgpool
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
return x
class ResNet34Fc(nn.Module):
def __init__(self):
super(ResNet34Fc, self).__init__()
model_resnet34 = models.resnet34(pretrained=True)
self.conv1 = model_resnet34.conv1
self.bn1 = model_resnet34.bn1
self.relu = model_resnet34.relu
self.maxpool = model_resnet34.maxpool
self.layer1 = model_resnet34.layer1
self.layer2 = model_resnet34.layer2
self.layer3 = model_resnet34.layer3
self.layer4 = model_resnet34.layer4
self.avgpool = model_resnet34.avgpool
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
return x
class ResNet50Fc(nn.Module):
def __init__(self, in_channels):
super(ResNet50Fc, self).__init__()
model_resnet50 = models.resnet50(pretrained=True)
# self.conv1 = model_resnet50.conv1
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = model_resnet50.bn1
self.relu = model_resnet50.relu
self.maxpool = model_resnet50.maxpool
self.layer1 = model_resnet50.layer1
self.layer2 = model_resnet50.layer2
self.layer3 = model_resnet50.layer3
self.layer4 = model_resnet50.layer4
self.avgpool = model_resnet50.avgpool
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
return x
class ResNet101Fc(nn.Module):
def __init__(self):
super(ResNet101Fc, self).__init__()
model_resnet101 = models.resnet101(pretrained=True)
self.conv1 = model_resnet101.conv1
self.bn1 = model_resnet101.bn1
self.relu = model_resnet101.relu
self.maxpool = model_resnet101.maxpool
self.layer1 = model_resnet101.layer1
self.layer2 = model_resnet101.layer2
self.layer3 = model_resnet101.layer3
self.layer4 = model_resnet101.layer4
self.avgpool = model_resnet101.avgpool
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
return x
class ResNet152Fc(nn.Module):
def __init__(self):
super(ResNet152Fc, self).__init__()
model_resnet152 = models.resnet152(pretrained=True)
self.conv1 = model_resnet152.conv1
self.bn1 = model_resnet152.bn1
self.relu = model_resnet152.relu
self.maxpool = model_resnet152.maxpool
self.layer1 = model_resnet152.layer1
self.layer2 = model_resnet152.layer2
self.layer3 = model_resnet152.layer3
self.layer4 = model_resnet152.layer4
self.avgpool = model_resnet152.avgpool
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
return x
class ResNet(nn.Module):
def __init__(self, block, layers, in_channels, num_classes=1000):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=1)
self.layer3 = self._make_layer(block, 256, layers[2], stride=1)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1)
self.avgpool = nn.AvgPool2d(3, stride=1)
self.baselayer = [self.conv1, self.bn1, self.layer1, self.layer2, self.layer3, self.layer4]
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
return x
class ResBase(nn.Module):
def __init__(self, N_BANDS, num_class, option, pret=True):
super(ResBase, self).__init__()
self.dim = 2048
if option == 'resnet18':
model_ft = ResNet18Fc(N_BANDS)
self.dim = 512
if option == 'resnet50':
model_ft = models.resnet50(pretrained=pret)
if option == 'resnet101':
model_ft = models.resnet101(pretrained=pret)
if option == 'resnet152':
model_ft = models.resnet152(pretrained=pret)
if option == 'HybridSN':
model_ft = HybridSN()
if option == 'DCRN':
model_ft = DCRN(N_BANDS,7,num_class)
mod = list(model_ft.children())
mod.pop()
self.model_ft =model_ft
self.features = nn.Sequential(*mod)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
return x
class DCRN(nn.Module):
def __init__(self, input_channels, patch_size, n_classes):
super(DCRN, self).__init__()
self.kernel_dim = 1
self.feature_dim = input_channels
self.sz = patch_size
# Convolution Layer 1 kernel_size = (1, 1, 7), stride = (1, 1, 2), output channels = 24
self.conv1 = nn.Conv3d(1, 24, kernel_size=(7, 1, 1), stride=(2, 1, 1), bias=True)
self.bn1 = nn.BatchNorm3d(24)
self.activation1 = nn.ReLU()
# Residual block 1
self.conv2 = nn.Conv3d(24, 24, kernel_size=(7, 1, 1), stride=1, padding=(3, 0, 0), padding_mode='replicate',
bias=True)
self.bn2 = nn.BatchNorm3d(24)
self.activation2 = nn.ReLU()
self.conv3 = nn.Conv3d(24, 24, kernel_size=(7, 1, 1), stride=1, padding=(3, 0, 0), padding_mode='replicate',
bias=True)
self.bn3 = nn.BatchNorm3d(24)
self.activation3 = nn.ReLU()
# Finish
# Convolution Layer 2 kernel_size = (1, 1, (self.feature_dim - 6) // 2), output channels = 128
self.conv4 = nn.Conv3d(24, 128, kernel_size=(((self.feature_dim - 7) // 2 + 1), 1, 1), bias=True)
self.bn4 = nn.BatchNorm3d(128)
self.activation4 = nn.ReLU()
# Convolution layer for spatial information
self.conv5 = nn.Conv3d(1, 24, (self.feature_dim, 1, 1))
self.bn5 = nn.BatchNorm3d(24)
self.activation5 = nn.ReLU()
# Residual block 2
self.conv6 = nn.Conv3d(24, 24, kernel_size=(1, 3, 3), stride=1, padding=(0, 1, 1), padding_mode='replicate',
bias=True)
self.bn6 = nn.BatchNorm3d(24)
self.activation6 = nn.ReLU()
self.conv7 = nn.Conv3d(24, 24, kernel_size=(1, 3, 3), stride=1, padding=(0, 1, 1), padding_mode='replicate',
bias=True)
self.bn7 = nn.BatchNorm3d(24)
self.activation7 = nn.ReLU()
self.conv8 = nn.Conv3d(24, 24, kernel_size=1)
# Finish
# Combination shape
self.inter_size = 128 + 24
# Residual block 3
self.conv9 = nn.Conv3d(self.inter_size, self.inter_size, kernel_size=(1, 3, 3), stride=1, padding=(0, 1, 1),
padding_mode='replicate', bias=True)
self.bn9 = nn.BatchNorm3d(self.inter_size)
self.activation9 = nn.ReLU()
self.conv10 = nn.Conv3d(self.inter_size, self.inter_size, kernel_size=(1, 3, 3), stride=1, padding=(0, 1, 1),
padding_mode='replicate', bias=True)
self.bn10 = nn.BatchNorm3d(self.inter_size)
self.activation10 = nn.ReLU()
# Average pooling kernel_size = (5, 5, 1)
self.avgpool = nn.AvgPool3d((1, self.sz, self.sz))
# Fully connected Layer
self.fc1 = nn.Linear(in_features=self.inter_size, out_features=n_classes)
# parameters initialization
for m in self.modules():
if isinstance(m, nn.Conv3d):
torch.nn.init.kaiming_normal_(m.weight.data)
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm3d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def forward(self, x, bounds=None):
# Convolution layer 1
x1 = self.conv1(x)
x1 = self.activation1(self.bn1(x1))
# Residual layer 1
residual = x1
x1 = self.conv2(x1)
x1 = self.activation2(self.bn2(x1))
x1 = self.conv3(x1)
x1 = residual + x1
x1 = self.activation3(self.bn3(x1))
# Convolution layer to combine rest
x1 = self.conv4(x1)
x1 = self.activation4(self.bn4(x1))
x1 = x1.reshape(x1.size(0), x1.size(1), x1.size(3), x1.size(4))
x2 = self.conv5(x)
x2 = self.activation5(self.bn5(x2))
# Residual layer 2
residual = x2
residual = self.conv8(residual)
x2 = self.conv6(x2)
x2 = self.activation6(self.bn6(x2))
x2 = self.conv7(x2)
x2 = residual + x2
x2 = self.activation7(self.bn7(x2))
x2 = x2.reshape(x2.size(0), x2.size(1), x2.size(3), x2.size(4))
# concat spatial and spectral information
x = torch.cat((x1, x2), 1)
x = self.avgpool(x)
x = x.reshape((x.size(0), -1))
# Fully connected layer
# x = self.fc1(x)
return x
network_dict = {"AlexNet": AlexNetFc,
"ResNet18": ResNet18Fc,
"ResNet34": ResNet34Fc,
"ResNet50": ResNet50Fc,
"ResNet101": ResNet101Fc,
"ResNet152": ResNet152Fc}