From f2f47de638ad25445a7959e32fca4ac9ce522386 Mon Sep 17 00:00:00 2001 From: jpolchlo Date: Mon, 12 Jul 2021 10:54:11 -0400 Subject: [PATCH] Working version of RSPA --- .../hyperspectral/unmixing/__init__.py | 1 + .../hyperspectral/unmixing/rspa.py | 55 +++++++++++++++++++ src/hyperspectral/requirements.txt | 1 + 3 files changed, 57 insertions(+) create mode 100644 src/hyperspectral/hyperspectral/unmixing/__init__.py create mode 100644 src/hyperspectral/hyperspectral/unmixing/rspa.py diff --git a/src/hyperspectral/hyperspectral/unmixing/__init__.py b/src/hyperspectral/hyperspectral/unmixing/__init__.py new file mode 100644 index 0000000..de2eb41 --- /dev/null +++ b/src/hyperspectral/hyperspectral/unmixing/__init__.py @@ -0,0 +1 @@ +from .rspa import rspa diff --git a/src/hyperspectral/hyperspectral/unmixing/rspa.py b/src/hyperspectral/hyperspectral/unmixing/rspa.py new file mode 100644 index 0000000..a33d31f --- /dev/null +++ b/src/hyperspectral/hyperspectral/unmixing/rspa.py @@ -0,0 +1,55 @@ +import math + +import numpy as np + +def compute_alpha(x, y, β): + u = x / np.linalg.norm(x, 2) + assert np.linalg.norm(x, 2) > np.linalg.norm(y, 2), "x must be larger in norm than y" + num = (β * np.linalg.norm(x, 2)**2 - np.linalg.norm(y, 2)**2) + denom = (β * np.dot(u, x)**2 - np.dot(u, y)**2) + #print('Numerator: {}\nDenominator: {}'.format(num, denom)) + return 1 - math.sqrt(1 - num / denom) + +def select_key(spectra, d, p, β): + try: + from tqdm.autonotebook import trange + except: + trange = range + + m = spectra.shape[1] + R = spectra + Y = R + Py = np.eye(m) + k = [] + k1 = [] + e = [] + for i in trange(d, leave=False): + k.append(np.argmax(np.linalg.norm(Y, 2, axis=1))) + u = spectra[k[i]] / np.linalg.norm(spectra[k[i]], 2) + R = spectra - np.einsum('n,m->nm',np.matmul(spectra, u), u) + e.append(np.sum(np.linalg.norm(R, 2, axis=1)**p)) + k1.append(np.argmax(np.linalg.norm(R, 2, axis=1))) + x = Y[k[i]] + y = Y[k1[i]] + #x = np.matmul(Py, spectra[k[i]]) + #y = np.matmul(Py, spectra[k1[i]]) + α = compute_alpha(x, y, β) + Y = Y - α * np.einsum('n,m->nm', np.matmul(Y, u), u) + #Py = np.matmul(np.eye(m) - α * np.outer(u, u), Py) + return k[np.argmin(e)] + +def rspa(image, n, d, β=4.0, p=1, tol=1e-8): + if len(image.shape)==3: + spectra = image.reshape((image.shape[0]*image.shape[1], -1)) + else: + spectra = image + R = spectra + k = 1 + keys = [] + while np.any(np.abs(R) > tol) and k <= n: + key = select_key(R, d, p, β) + u = R[key] / np.linalg.norm(R[key], 2) + R = R - np.einsum('n,m->nm', np.matmul(R, u), u) + keys.append(key) + k = k + 1 + return spectra[keys] diff --git a/src/hyperspectral/requirements.txt b/src/hyperspectral/requirements.txt index 871228d..703c9a5 100644 --- a/src/hyperspectral/requirements.txt +++ b/src/hyperspectral/requirements.txt @@ -1,6 +1,7 @@ GDAL==3.0.4 jupyter==1.0.0 matplotlib==3.1.2 +pysptools==0.15.0 rasterio==1.1.7 Shapely==1.7.1 tqdm==4.51.0