-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfft.h
192 lines (181 loc) · 5.76 KB
/
fft.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#pragma once
#include <cmath>
#include <complex>
template <int N, int k, typename T = float>
struct lut {
typedef std::complex<T> cfloat_t;
cfloat_t d[N];
lut() {
constexpr cfloat_t w0 = {0.0, -T(M_PI)/T(2 * N)};
d[0] = {1.0, 0.0};
for (int i = 1; i < N; ++i)
d[i] = exp(w0 * float(i * k));
}
};
// generic N = 2^a case
template <int N, int S, int SO = 1, typename T = float>
struct splitfft {
typedef std::complex<T> cfloat_t;
splitfft<N / 2, S * 2, SO> s2;
splitfft<N / 4, S * 4, SO> s4;
void apply(const cfloat_t * __restrict__ in, cfloat_t *out,
const cfloat_t * __restrict__ l1, const cfloat_t * __restrict__ l3,
unsigned log2stride) {
constexpr cfloat_t I(0.0f, 1.0f);
s2.apply(in, out, l1, l3, log2stride + 1);
s4.apply(in + S, out + N/2*SO, l1, l3, log2stride + 2);
s4.apply(in + 3*S, out + 3*N/4*SO, l1, l3, log2stride + 2);
{
cfloat_t Uk = out[0];
cfloat_t Zk = out[0+SO*N/2];
cfloat_t Uk2 = out[0+SO*N/4];
cfloat_t Zdk = out[0+SO*3*N/4];
out[0] = Uk + (Zk + Zdk);
out[0+SO*N/2] = Uk - (Zk + Zdk);
out[0+SO*N/4] = Uk2 - I*(Zk - Zdk);
out[0+SO*3*N/4] = Uk2 + I*(Zk - Zdk);
}
for(unsigned k = 1; k < N/4; ++k) {
cfloat_t Uk = out[SO*(k)];
cfloat_t Zk = out[SO*(k+N/2)];
cfloat_t Uk2 = out[SO*(k+N/4)];
cfloat_t Zdk = out[SO*(k+3*N/4)];
cfloat_t w1 = l1[k << log2stride];
cfloat_t w3 = l3[k << log2stride];
out[SO*(k)] = Uk + (w1*Zk + w3*Zdk);
out[SO*(k+N/2)] = Uk - (w1*Zk + w3*Zdk);
out[SO*(k+N/4)] = Uk2 - I*(w1*Zk - w3*Zdk);
out[SO*(k+3*N/4)] = Uk2 + I*(w1*Zk - w3*Zdk);
}
}
};
// template specialization for N = 4
template <int S, int SO, typename T>
struct splitfft<4, S, SO, T> {
typedef std::complex<T> cfloat_t;
void apply(const cfloat_t * __restrict__ in, cfloat_t *out,
const cfloat_t * __restrict__ l1, const cfloat_t * __restrict__ l3,
unsigned log2stride) {
(void)l1;
(void)l3;
(void)log2stride;
constexpr cfloat_t I(0.0f, 1.0f);
cfloat_t a = in[0];
cfloat_t Zk = in[S];
cfloat_t b = in[2 * S];
cfloat_t Zdk = in[3 * S];
cfloat_t Uk = a + b;
cfloat_t Uk2 = a - b;
out[0] = Uk + (Zk + Zdk);
out[SO] = Uk2 - I * (Zk - Zdk);
out[SO * 2] = Uk - (Zk + Zdk);
out[SO * 3] = Uk2 + I * (Zk - Zdk);
}
};
// template specialization for N = 8
template <int S, int SO, typename T>
struct splitfft<8, S, SO, T> {
typedef std::complex<T> cfloat_t;
void apply(const cfloat_t * __restrict__ in, cfloat_t *out,
const cfloat_t * __restrict__ l1, const cfloat_t * __restrict__ l3, unsigned log2stride) {
(void)l1;
(void)l3;
(void)log2stride;
constexpr cfloat_t I(0.0f, 1.0f);
{
cfloat_t a = in[0];
cfloat_t Zk = in[2 * S];
cfloat_t b = in[4 * S];
cfloat_t Zdk = in[6 * S];
cfloat_t Uk = a + b;
cfloat_t Uk2 = a - b;
a = Zk + Zdk;
b = I * (Zk - Zdk);
out[0] = Uk + a;
out[SO] = Uk2 - b;
out[SO * 2] = Uk - a;
out[SO * 3] = Uk2 + b;
a = in[S];
cfloat_t c = in[3 * S];
b = in[5 * S];
cfloat_t d = in[7 * S];
out[4 * SO] = a + b;
out[5 * SO] = a - b;
out[6 * SO] = c + d;
out[7 *SO] = c - d;
}
{
cfloat_t Uk = out[0];
cfloat_t Uk2 = out[SO * 2];
cfloat_t Zk = out[SO * 4];
cfloat_t Zdk = out[SO * 6];
out[0] = Uk + (Zk + Zdk);
out[SO * 2] = Uk2 - I*(Zk - Zdk);
out[SO * 4] = Uk - (Zk + Zdk);
out[SO * 6] = Uk2 + I*(Zk - Zdk);
}
{
cfloat_t Uk = out[SO * 1];
cfloat_t Uk2 = out[SO * 3];
cfloat_t Zk = out[SO * 5];
cfloat_t Zdk = out[SO * 7];
constexpr float w = M_SQRT1_2;
constexpr cfloat_t w1 = {w, -w};
constexpr cfloat_t w3 = {-w, -w};
cfloat_t a = (w1 * Zk + w3 * Zdk);
cfloat_t b = I * (w1 * Zk - w3 * Zdk);
out[SO * 1] = Uk + a;
out[SO * 3] = Uk2 - b;
out[SO * 5] = Uk - a;
out[SO * 7] = Uk2 + b;
}
}
};
// 1D recursive template split-radix out-of-place FFT
template <int N, int S = 1, typename T = float>
struct fft1d {
const lut<N/4, 1> l1;
const lut<N/4, 3> l3;
splitfft<N, S, S> sfft;
void apply(const std::complex<T> *__restrict__ in, std::complex<T> *out) {
sfft.apply(in, out, l1.d, l3.d, 0);
}
};
// 2D recursive template split-radix out-of-place FFT
template <int N, typename T = float>
struct fft2d {
typedef std::complex<T> cfloat_t;
fft1d<N, N> fftc;
fft1d<N, 1> fftr;
cfloat_t temp[N*N];
void apply(cfloat_t *in) {
int c = N;
cfloat_t *t = in;
cfloat_t *o = temp;
while (c--)
fftc.apply(t++, o++);
c = N;
t = temp;
o = in;
while (c--) {
fftr.apply(t, o);
t += N;
o += N;
}
}
void apply(const cfloat_t *__restrict__ in, cfloat_t *out) {
const cfloat_t *t = in;
cfloat_t *o = temp;
int c = N;
while (c--)
fftc.apply(t++, o++);
t = temp;
o = out;
c = N;
while (c--) {
fftr.apply(t, o);
t += N;
o += N;
}
}
};