-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar10.py
executable file
·57 lines (46 loc) · 1.29 KB
/
cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from hpelm import ELM
import numpy as np
import time
def unpickle(fileName):
import cPickle
fo = open(fileName, 'rb')
dictList = cPickle.load(fo)
fo.close()
return dictList
batch_size = 10000
hidden_num = 1000
_inputs = 3072
_outputs = 10
print("batch_size : {}".format(batch_size))
print("hidden_num : {}".format(hidden_num))
start_time = time.time()
k = 1
elm = ELM(_inputs, _outputs, batch=batch_size)
elm.add_neurons(hidden_num, "tanh")
while k <= 5:
print("batch : {}".format(k))
data = unpickle("./data/cifar-10-batches-py/data_batch_" + str(k))
print (data)
train_x = np.array(data['data'], dtype="int")
train_y = np.array(data['labels'])
train_y = np.eye(np.max(train_y) + 1)[train_y]
elm.train(train_x, train_y)
k += 1
end_time = time.time()
test = unpickle("./data/cifar-10-batches-py/test_batch")
test_x = np.array(test['data'], dtype="int")
test_y = np.array(test['labels'])
test_y = np.eye(np.max(test_y) + 1)[test_y]
Y = elm.predict(test_x)
predict = []
for y in Y:
predict.append(y.argmax())
gt = []
for y in test_y:
gt.append(y.argmax())
save = []
for _ in np.arange(0, len(gt)):
k = True if gt[_] == predict[_] else False
save.append(k)
print(" %s seconds" % (end_time - start_time))
print("accuracy: {0}".format(np.mean(save)))