-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathba.lyx
executable file
·4194 lines (3127 loc) · 79.3 KB
/
ba.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.1 created this file. For more info see http://www.lyx.org/
\lyxformat 474
\begin_document
\begin_header
\textclass scrartcl
\begin_preamble
\usepackage{fancyhdr}
\pagestyle{fancyplain}
\fancyhf{}
\end_preamble
\use_default_options true
\begin_modules
theorems-ams
eqs-within-sections
figs-within-sections
algorithm2e
\end_modules
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman charter
\font_sans default
\font_typewriter default
\font_math auto
\font_default_family rmdefault
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement h
\paperfontsize default
\spacing onehalf
\use_hyperref true
\pdf_title "PCCA+ and its application to spatial timeseries clustering"
\pdf_author "Alexander Sikorski"
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder false
\pdf_colorlinks false
\pdf_backref false
\pdf_pdfusetitle true
\papersize a4paper
\use_geometry true
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 3cm
\topmargin 3cm
\rightmargin 3cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
Bachelor Thesis
\shape up
\begin_inset Newline newline
\end_inset
\shape default
\begin_inset VSpace 1cm*
\end_inset
\shape up
PCCA+ and its Application
\begin_inset Newline newline
\end_inset
to Spatial Time Series Clustering
\begin_inset VSpace 1cm*
\end_inset
\end_layout
\begin_layout Subtitle
\begin_inset Graphics
filename siegel.png
width 7cm
\end_inset
\begin_inset Newline newline
\end_inset
\begin_inset VSpace 1cm*
\end_inset
Free University of Berlin
\begin_inset Newline newline
\end_inset
Department of Mathematics and Computer Science
\begin_inset VSpace 1cm*
\end_inset
\end_layout
\begin_layout Author
Alexander Sikorski
\begin_inset Newline newline
\end_inset
Supervisor: PD Dr.
Marcus Weber
\end_layout
\begin_layout Date
March 18th, 2015
\end_layout
\begin_layout Standard
\begin_inset Newpage newpage
\end_inset
\end_layout
\begin_layout Section*
Declaration
\end_layout
\begin_layout Standard
I hereby declare that this thesis is my own work and has not been submitted
in any form for another degree or diploma at any university or other institute.
Information derived from the published and unpublished work of others has
been acknowledged in the text and a list of references is given.
\end_layout
\begin_layout Standard
\begin_inset VSpace 2cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset line
LatexCommand rule
offset "0.5ex"
width "100col%"
height "1pt"
\end_inset
\end_layout
\begin_layout Standard
Alexander Sikorski
\end_layout
\begin_layout Standard
Berlin, March 18th, 2015
\end_layout
\begin_layout Standard
\begin_inset Newpage newpage
\end_inset
\begin_inset CommandInset toc
LatexCommand tableofcontents
\end_inset
\begin_inset Newpage newpage
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
setcounter{page}{1}
\backslash
fancyhf[FRO,FLE]{
\backslash
thepage}
\end_layout
\begin_layout Plain Layout
\backslash
fancyhead[LO]{
\backslash
leftmark}
\end_layout
\begin_layout Plain Layout
\backslash
fancyhead[RE]{
\backslash
rightmark}
\end_layout
\end_inset
\end_layout
\begin_layout Section
\shape up
Introduction
\end_layout
\begin_layout Standard
In this thesis, we develop an algorithm for clustering spatial time series
into a prescribed number of clusters based on their spatial and dynamical
properties.
\end_layout
\begin_layout Standard
After an introduction to the underlying theoretical background we will review
known results about the
\emph on
Robust Perron Cluster Cluster Analysis
\emph default
(PCCA+), which forms the basis for our application.
PCCA+ allows to identify metastable clusters in Markov chains which are
configurations of the system which are likely to persist for a longer time.
In the course, we will extend the known results by a stochastic interpretation
for the propagator matrix which encodes the time evolution on the clusters.
\end_layout
\begin_layout Standard
We then explain a method to turn spatial time series into a Markov chain
to obtain a spatial clustering by further application of PCCA+, respecting
the dynamic information.
Finally, we will apply that method to data obtained by tracking human eye
fixations while these look at different paintings to detect the depicted
objects.
This can be seen as a form of object recognition which does not rely on
the image data itself but detects the objects based on the human recognition
reflected in their eye movement.
\end_layout
\begin_layout Standard
The presented program was developed in cooperation with the Zuse Institute
Berlin and the University of Potsdam and I would like to thank Dr.
Weber and Prof.
Dr.
Kliegl for their support.
\end_layout
\begin_layout Section
\shape up
Theoretical background
\end_layout
\begin_layout Subsection
Introduction to Markov chains
\end_layout
\begin_layout Standard
Let
\begin_inset Formula $S$
\end_inset
be any finite set, i.e.
\begin_inset Formula $S:=\left\{ s_{1},...,s_{N}\right\} $
\end_inset
.
A
\emph on
Markov chain
\emph default
on
\begin_inset Formula $S$
\end_inset
is a stochastic process, consisting of a sequence of random variables
\begin_inset Formula $X_{i}:\Omega\rightarrow S$
\end_inset
,
\begin_inset Formula $i\in\mathbb{N}$
\end_inset
satisfying the Markov property:
\begin_inset Formula
\[
P(X_{t+1}=x|X_{1}=x_{1},X_{2}=x_{2},...,X_{t}=x_{t})=P(X_{t+1}=x|X_{t}=x_{t})\,\forall t\in\mathbb{N}.
\]
\end_inset
It is common to interpret
\begin_inset Formula $S$
\end_inset
as the state space of possible outcomes of measurements at time step
\begin_inset Formula $t$
\end_inset
represented by
\begin_inset Formula $X_{t}$
\end_inset
.
The Markov property assures that the transition probabilities to the next
time step
\begin_inset Formula $x{}_{t+1}$
\end_inset
only depend on the current state
\begin_inset Formula $x_{t}$
\end_inset
.
This means that the process at time
\begin_inset Formula $t$
\end_inset
has no memory of its previous history
\begin_inset Formula $(x_{1},...,x_{t-1})$
\end_inset
, sometimes this is also called the memoryless property.
\end_layout
\begin_layout Standard
We will furthermore assume that the process is autonomous, i.e.
not explicitly depending on the time:
\begin_inset Formula
\[
P(X_{t+1}=x|X_{t}=y)=P(X_{t}=x|X_{t-1}=y)\forall t\in\mathbb{N}.
\]
\end_inset
This does not really impose a restriction since any non-autonomous process
can be turned into an autonomous one: By adding all possible times to the
state space
\begin_inset Formula $S$
\end_inset
using the Cartesian product
\begin_inset Formula $S':=\mathbb{N}\times S$
\end_inset
, the explicit time-dependence of the process on
\begin_inset Formula $S$
\end_inset
can be implicitly subsumed by an autonomous process on
\begin_inset Formula $S'$
\end_inset
.
\end_layout
\begin_layout Standard
Since
\begin_inset Formula $S$
\end_inset
is finite, we can, enumerating all states in
\begin_inset Formula $S$
\end_inset
, encode the whole process in the right stochastic
\emph on
transition matrix
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
P_{ij}:=P\left(X_{t+1}=j|X_{t}=i\right),
\]
\end_inset
in which case right stochastic means that each row has row sum one and propagati
on of states is realized by right application of
\begin_inset Formula $P$
\end_inset
.
\end_layout
\begin_layout Standard
A
\emph on
stationary distribution
\emph default
is a row vector
\begin_inset Formula $\pi$
\end_inset
, satisfying
\begin_inset Formula
\[
\pi P=\pi,\,\sum_{i=1}^{N}\pi_{i}=1.
\]
\end_inset
\end_layout
\begin_layout Standard
Given a stationary distribution
\begin_inset Formula $\pi$
\end_inset
, we denote by
\begin_inset Formula $D_{\pi}$
\end_inset
the diagonal matrix with
\begin_inset Formula $\pi$
\end_inset
on its diagonal.
\end_layout
\begin_layout Standard
Although we only consider a discrete state space in this thesis, the results
are extendible to continuous state spaces as well.
A natural way is using a set-based discretization dividing the state space
into a finite mesh of subsets.
For high dimensional state spaces, as for example met in molecular dynamics,
this approach exhibits the curse of dimensionality, as the size of the
mesh grows exponentially with the dimensions.
Weber developed a meshless version of PCCA+ using a global Galerkin discretizat
ion
\begin_inset CommandInset citation
LatexCommand cite
key "Weber2006"
\end_inset
as solution to this problem .
\end_layout
\begin_layout Subsection
Clustering of the state space
\end_layout
\begin_layout Standard
The goal of PCCA+ is to reduce the complexity of analysis of the Markov
chain by a dimension reduction of the state space.
To formalize this we will now introduce the concept of clustering, which
is subsuming different states of the state space to a smaller set of
\begin_inset Formula $n\in\mathbb{N}$
\end_inset
clusters
\begin_inset Formula $C:=\left\{ 1,...,n\right\} $
\end_inset
.
\end_layout
\begin_layout Standard
The simplest possibility is assigning each state
\begin_inset Formula $k\in S$
\end_inset
to a cluster
\begin_inset Formula $i\in C$
\end_inset
which can be encoded by means of the
\emph on
characteristic vector
\emph default
\begin_inset Formula $\chi_{i}\in\left\{ 0,1\right\} ^{N}$
\end_inset
:
\begin_inset Formula
\[
\chi_{i,k}=\begin{cases}
1, & \text{if state \ensuremath{k}}\text{ belongs to cluster }i\\
0, & \text{else }
\end{cases}.
\]
\end_inset
Due to its discrete nature, this
\emph on
crisp clustering
\emph default
approach, used by the
\emph on
Perron Cluster Cluster Analysis
\emph default
(PCCA)
\begin_inset CommandInset citation
LatexCommand cite
key "Deuflhard2000"
\end_inset
, has the disadvantage of not being robust against small perturbations since
continuous changes in
\begin_inset Formula $P$
\end_inset
finally result in discontinuous changes in the clustering.
\end_layout
\begin_layout Standard
Deuflhard and Weber therefore developed a robust version,
\emph on
Robust Perron Cluster Analysis
\emph default
(PCCA+)
\begin_inset CommandInset citation
LatexCommand cite
key "Deuflhard2005"
\end_inset
, by making use of a
\emph on
fuzzy clustering
\emph default
representing each cluster by an
\emph on
almost characteristic vector
\begin_inset Formula
\begin{equation}
\chi_{i}\in\left[0,1\right]^{n}.\label{eq:pos}
\end{equation}
\end_inset
\emph default
A
\emph on
lmost characteristic vectors
\begin_inset Formula $\left\{ \chi_{i}\right\} _{i=1}^{n}$
\end_inset
\emph default
satisfying the partition of unity property
\begin_inset Formula
\begin{equation}
\sum_{i=1}^{n}\chi_{i}=1\label{eq:pu}
\end{equation}
\end_inset
are called
\emph on
membership vectors
\emph default
as they describe the relative membership of each state to each cluster.
We will refer to the matrix collection
\begin_inset Formula $\chi:=\left(\chi_{i}\right)_{i=1}^{n}\in\mathbb{R}^{N\times n}$
\end_inset
of the
\emph on
membership vectors
\emph default
as a
\emph on
clustering
\emph default
, whereas in the field of computational chemistry it is also referred to
as
\emph on
conformations.
\end_layout
\begin_layout Subsection
Galerkin projection of the transition matrix
\end_layout
\begin_layout Subsubsection*
The coupling Matrix
\end_layout
\begin_layout Standard
To represent the dynamics on the reduced/clustered state space in the case
of a
\emph on
crisp clustering
\emph default
\begin_inset Formula $\chi$
\end_inset
, i.e.
\begin_inset Formula $\chi_{i}\in\left\{ 0,1\right\} $
\end_inset
, Deuflhard et al.
\begin_inset CommandInset citation
LatexCommand cite
key "Deuflhard2000"
\end_inset
introduced the
\emph on
coupling matrix
\emph default
\emph on
\begin_inset Formula
\[
W_{ij}:=\frac{\left\langle \chi_{j},P\chi_{i}\right\rangle _{\pi}}{\left\langle \chi_{i},1\right\rangle _{\pi}}=\frac{\chi_{j}^{T}D_{\pi}P\chi_{i}}{\pi^{T}\chi_{i}},
\]
\end_inset
\emph default
or in matrix notation
\begin_inset Formula
\[
W:=\text{diag}\left(\chi^{T}\pi\right)^{-1}\chi^{T}D_{\pi}P\chi.
\]
\end_inset
The entries
\begin_inset Formula $W_{ij}$
\end_inset
can thus be interpreted as conditional transition probabilities from cluster
\begin_inset Formula $i$
\end_inset
to cluster
\begin_inset Formula $j$
\end_inset
, given the starting distribution
\begin_inset Formula $\pi$
\end_inset
\emph on
.
\end_layout
\begin_layout Standard
In the
\emph on
fuzzy clustering
\emph default
setting, the problem arises that it is not clear anymore which state belongs
to which cluster.
It is therefore convenient to interpret the membership of state
\begin_inset Formula $j$
\end_inset
to cluster
\begin_inset Formula $\chi_{i}$
\end_inset
,
\begin_inset Formula $\chi_{ij}$
\end_inset
, as the probability of measuring state
\begin_inset Formula $j$
\end_inset
belonging to cluster
\begin_inset Formula $\chi_{i}$
\end_inset
.
Then,
\begin_inset Formula $W_{ij}$
\end_inset
denotes the expectation value for measuring cluster
\begin_inset Formula $\chi_{j}$
\end_inset
after propagating the density given by
\begin_inset Formula $\chi_{i}$
\end_inset
.
\end_layout
\begin_layout Standard
Note, however, that even if no real transitions are actually happening in
the state space, we still may count transitions between clusters since
we measure the same state once belonging to one and then to another cluster,
as demonstrated in example 3.
\end_layout
\begin_layout Standard
One of the main motivations for developing PCCA+ was the wish to identify
so called
\emph on
metastable
\emph default
\emph on
conformations
\emph default
of molecular systems, e.g.
to analyze the effectivity of active pharmaceutical ingredients in Computationa
l Molecular Design (for a overview over this approach see
\begin_inset CommandInset citation
LatexCommand cite
key "Jan-HendrikPrinz2011"
\end_inset
).
These
\emph on
conformations
\emph default
are
\emph on
almost invariant
\emph default
\emph on
aggregates
\emph default
of states, i.e.
\emph on
membership vectors
\emph default
with high self-transition probabilities, guaranteeing that the system resides
in these states on longer timescales.
\end_layout
\begin_layout Standard
This can be formalized, as proposed by Huisinga
\begin_inset CommandInset citation
LatexCommand cite
key "Huising2001"
\end_inset
, by the definition of the
\emph on
metastability
\emph default
of
\emph on
membership vectors
\emph default
as the trace of the corresponding
\emph on
coupling matrix
\emph default
:
\begin_inset Formula $\text{tr}\left(W\right).$
\end_inset
Note, this does not need to correspond with a high probability of the cluster.
\end_layout
\begin_layout Subsubsection*
The propagator matrix
\end_layout
\begin_layout Standard
Unfortunately, the projection via the
\emph on
coupling matrix
\emph default
does not commute with time propagation and therefore cannot be used for
long term analyses of the underlying Markov chain.
\end_layout
\begin_layout Standard
As remedy, Kube and Weber
\begin_inset CommandInset citation
LatexCommand cite
key "Kube2007"
\end_inset
proposed the
\emph on
coarse propagator matrix
\emph default
\emph on
\begin_inset Formula
\begin{equation}
P_{C}:=\left(\chi^{T}D_{\pi}\chi\right)^{-1}\chi^{T}D_{\pi}P\chi\label{eq:pc}
\end{equation}
\end_inset
\emph default
which coincides with the
\emph on
coupling matrix
\begin_inset Formula $W$
\end_inset
\emph default
in the
\emph on
crisp clustering
\emph default
setting.
Assuming that
\begin_inset Formula $\chi$
\end_inset
is a linear combination of vectors spanning a
\begin_inset Formula $P$
\end_inset
-invariant subspace satisfying an invertibility condition, it has the advantage
that discretization via
\begin_inset Formula $\chi$
\end_inset
and time propagation commute, i.e.
\begin_inset Formula
\begin{equation}
P\chi=\chi P_{C}.\label{eq:com}
\end{equation}
\end_inset
This property ensures that the
\emph on
coupling matrix
\emph default
represents the right dynamics of the underlying Markov chain on the reduced
state space, even for iterative application, i.e.
\begin_inset Formula $P^{n}\chi=\chi P_{C}^{n}$
\end_inset
.
\end_layout
\begin_layout Theorem
\begin_inset CommandInset label
LatexCommand label
name "thm:comm"
\end_inset
Let
\begin_inset Formula $\chi=XA$
\end_inset
,
\begin_inset Formula $X\in\mathbb{R}^{N\times n}$
\end_inset
,
\begin_inset Formula $A\in\mathbb{R}^{n\times n}$
\end_inset
satisfying the subspace condition
\begin_inset Formula
\begin{equation}
PX=X\Lambda\label{eq:ss}
\end{equation}
\end_inset
for some
\begin_inset Formula $\Lambda\in\mathbb{R}^{n\times n}$
\end_inset
and
\begin_inset Formula $C:=X^{T}D_{\pi}X$
\end_inset
be invertible.
\end_layout
\begin_layout Theorem
Then the
\begin_inset Formula $P_{C}$
\end_inset
is conjugate to
\begin_inset Formula $\Lambda$
\end_inset
and
\emph on
discretization-propagation commutativity
\emph default
(
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:com"
\end_inset
) holds
\emph on
.
\end_layout
\begin_layout Proof
We calculate
\begin_inset Formula
\begin{eqnarray}
P_{C} & = & \left(\chi^{T}D_{\pi}\chi\right)^{-1}\chi^{T}D_{\pi}P\chi\nonumber \\
& = & \left(A^{T}CA\right)^{-1}A^{T}C\Lambda A\nonumber \\
& = & A^{-1}C^{-1}A^{-T}A^{T}C\Lambda A\nonumber \\
& = & A^{-1}\Lambda A,\label{eq:conj}
\end{eqnarray}
\end_inset
which implies
\begin_inset Formula
\[
P\chi=PXA=X\Lambda A=XAA^{-1}\Lambda A=\chi P_{C}.
\]