-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhistory_columns.list
1062 lines (800 loc) · 32.5 KB
/
history_columns.list
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
! history_columns.list -- determines the contents of star history logs
! you can use a non-standard version by setting history_columns_file in your inlist
! units are cgs unless otherwise noted.
! reorder the following names as desired to reorder columns.
! comment out the name to omit a column (fewer columns => less IO => faster running).
! remove '!' to restore a column.
! if you have a situation where you want a non-standard set of columns,
! make a copy of this file, edit as desired, and give the new filename in your inlist
! as history_columns_file. if you are just adding columns, you can 'include' this file,
! and just list the additions in your file. note: to include the standard default
! version, use include '' -- the 0 length string means include the default file.
! blank lines and comments can be used freely.
! if a column name appears more than once in the list, only the first occurrence is used.
! if you need to have something added to the list of options, let me know....
! the first few lines of the log file contain a few items:
! version_number -- for the version of mesa being used
! burn_min1 -- 1st limit for reported burning, in erg/g/s
! burn_min2 -- 2nd limit for reported burning, in erg/g/s
!# other files
! note: you can include another list by doing
! include 'filename'
! include '' means include the default standard list file
! the following lines of the log file contain info about 1 model per row
!----------------------------------------------------------------------------------------------
!# general info about the model
model_number ! counting from the start of the run
num_zones ! number of zones in the model
!## age
star_age ! elapsed simulated time in years since the start of the run
!star_age_sec ! elapsed simulated time in seconds since the start of the run
!star_age_min ! elapsed simulated time in minutes since the start of the run
!star_age_hr ! elapsed simulated time in hours since the start of the run
!star_age_day ! elapsed simulated time in days since the start of the run
!day ! elapsed simulated time in days since the start of the run
!log_star_age
!log_star_age_sec
!## timestep
!time_step ! timestep in years since previous model
!time_step_sec ! timestep in seconds since previous model
!time_step_days
log_dt ! log10 time_step in years
!log_dt_sec ! log10 time_step in seconds
!log_dt_days ! log10 time_step in days
!## mass
star_mass ! in Msun units
!log_star_mass
!star_gravitational_mass ! star_mass is baryonic mass
!star_mass_grav_div_mass
!delta_mass ! star_mass - initial_mass in Msun units
log_xmstar ! log10 mass exterior to M_center (grams)
!## mass change
!star_mdot ! d(star_mass)/dt (in msolar per year)
log_abs_mdot ! log10(abs(star_mdot)) (in msolar per year)
!## imposed surface conditions
!Tsurf_factor
!tau_factor
!tau_surface
!## imposed center conditions
!m_center
!m_center_gm
!r_center
!r_center_cm
!r_center_km
!L_center
!log_L_center
!log_L_center_ergs_s
!v_center
!v_center_kms
!logt_max
!----------------------------------------------------------------------------------------------
!# mixing and convection
!max_conv_vel_div_csound
!max_gradT_div_grada
!max_gradT_sub_grada
!min_log_mlt_Gamma
!## mixing regions
mass_conv_core ! (Msun) mass coord of top of convective core. 0 if core is not convective
! mx1 refers to the largest (by mass) convective region.
! mx2 is the 2nd largest.
! conv_mx1_top and conv_mx1_bot are the region where mixing_type == convective_mixing.
! mx1_top and mx1_bot are the extent of all kinds of mixing, convective and other.
! values are m/Mstar
conv_mx1_top
conv_mx1_bot
conv_mx2_top
conv_mx2_bot
mx1_top
mx1_bot
mx2_top
mx2_bot
! radius -- values are radii in Rsun units
!conv_mx1_top_r
!conv_mx1_bot_r
!conv_mx2_top_r
!conv_mx2_bot_r
!mx1_top_r
!mx1_bot_r
!mx2_top_r
!mx2_bot_r
! you might want to get a more complete list of mixing regions by using the following
!mixing_regions <integer> ! note: this includes regions where the mixing type is no_mixing.
! the <integer> is the number of regions to report
! there will be 2*<integer> columns for this in the log file, 2 for each region.
! the first column for a region gives the mixing type as defined in const/public/const_def.f90.
! the second column for a region gives the m/mstar location of the top of the region
! entries for extra columns after the last region in the star will have an invalid mixing_type value of -1.
! mstar is the total mass of the star, so these locations range from 0 to 1
! all regions are include starting from the center, so the bottom of one region
! is the top of the previous one. since we start at the center, the bottom of the 1st region is 0.
! the columns in the log file will have names like 'mix_type_1' and 'mix_qtop_1'
! if the star has too many regions to report them all,
! the smallest regions will be merged with neighbors for reporting purposes only.
!mix_relr_regions <integer>
! same as above, but locations given as r/rstar instead of m/mstar.
! the columns in the log file will have names like 'mix_relr_type_1' and 'mix_relr_top_1'
!## conditions at base of largest convection zone (by mass)
!cz_bot_mass ! mass coordinate of base (Msun)
!cz_mass ! mass coordinate of base (Msun) -- same as cz_bot_mass
!cz_log_xmass ! mass exterior to base (g)
!cz_log_xmsun ! mass exterior to base (Msun)
!cz_xm ! mass exterior to base (Msun)
!cz_logT
!cz_logRho
!cz_logP
!cz_bot_radius ! Rsun
!cz_log_column_depth
!cz_log_radial_depth
!cz_luminosity ! Lsun
!cz_opacity
!cz_log_tau
!cz_eta
!cz_log_eps_nuc ! log10(ergs/g/s)
!cz_t_heat ! Cp*T/eps_nuc (seconds)
!cz_csound
!cz_scale_height
!cz_grav
!cz_omega
!cz_omega_div_omega_crit
!cz_zone
! mass fractions at base of largest convection zone (by mass)
!cz_log_xa h1
!cz_log_xa he4
!## conditions at top of largest convection zone (by mass)
!cz_top_mass ! mass coordinate of top (Msun)
!cz_top_log_xmass ! mass exterior to top (g)
!cz_top_log_xmsun ! mass exterior to top (Msun)
!cz_top_xm ! mass exterior to top (Msun)
!cz_top_logT
!cz_top_logRho
!cz_top_logP
!cz_top_radius ! Rsun
!cz_top_log_column_depth
!cz_top_log_radial_depth
!cz_top_luminosity ! Lsun
!cz_top_opacity
!cz_top_log_tau
!cz_top_eta
!cz_top_log_eps_nuc ! log10(ergs/g/s)
!cz_top_t_heat ! Cp*T/eps_nuc (seconds)
!cz_top_csound
!cz_top_scale_height
!cz_top_grav
!cz_top_omega
!cz_top_omega_div_omega_crit
!cz_top_zone
!cz_top_zone_logdq
! mass fractions at top of largest convection zone (by mass)
!cz_top_log_xa h1
!cz_top_log_xa he4
!----------------------------------------------------------------------------------------------
!# nuclear reactions
!## integrated quantities
!power_h_burn ! total thermal power from PP and CNO, excluding neutrinos (in Lsun units)
!power_he_burn ! total thermal power from triple-alpha, excluding neutrinos (in Lsun units)
!power_photo
!power_z_burn
!log_power_nuc_burn ! total thermal power from all burning, excluding photodisintegrations
log_LH ! log10 power_h_burn
log_LHe ! log10 power_he_burn
log_LZ ! log10 total burning power including LC, but excluding LH and LHe and photodisintegrations
log_Lnuc ! log(LH + LHe + LZ)
!log_Lnuc_ergs_s
!log_Lnuc_sub_log_L
!lnuc_photo
!extra_L ! integral of extra_heat in Lsun units
!log_extra_L ! log10 extra_L
!## neutrino losses
!log_Lneu ! log10 power emitted in neutrinos, nuclear and thermal (in Lsun units)
!log_Lneu_nuc ! log10 power emitted in neutrinos, nuclear sources only (in Lsun units)
!log_Lneu_nonnuc ! log10 power emitted in neutrinos, thermal sources only (in Lsun units)
!mass_loc_of_max_eps_nuc ! (in Msun units)
!mass_ext_to_max_eps_nuc ! (in Msun units)
!eps_grav_integral ! (in Lsun units)
!log_abs_Lgrav ! log10 abs(eps_grav_integral) (in Lsun units)
!## information about reactions (by category)
! log10 total luminosity for reaction categories (Lsun units)
pp
cno
tri_alfa
!c_alpha
!n_alpha
!o_alpha
!ne_alpha
!na_alpha
!mg_alpha
!si_alpha
!s_alpha
!ar_alpha
!ca_alpha
!ti_alpha
!fe_co_ni
!c12_c12
!c12_o16
!o16_o16
!photo
!pnhe4
!other
!## information about individual reactions
! adds columns for all of the reactions that are in the current net
!add_raw_rates ! raw reaction rates, reactions/second
! individual reactions (as many as desired)
! use list_net_reactions = .true. in star_job to list all reactions in the current net
! reactions/second
!raw_rate r_h1_h1_ec_h2
!raw_rate r_h1_h1_wk_h2
!## nuclear reactions at center
! center log10 burn erg/g/s for reaction categories
!c_log_eps_burn cno
!c_log_eps_burn tri_alfa
! center d_eps_nuc_dlnd for reaction categories
!c_d_eps_dlnd cno
!c_d_eps_dlnd tri_alfa
! center d_eps_nuc_dlnT for reaction categories
!c_d_eps_dlnT cno
!c_d_eps_dlnT tri_alfa
!## regions of strong nuclear burning
! 2 zones where eps_nuc > burn_min1 erg/g/s
! for each zone have 4 numbers: start1, start2, end2, end1
! start1 is mass of inner edge where first goes > burn_min1 (or -20 if none such)
! start2 is mass of inner edge where first zone reaches burn_min2 erg/g/sec (or -20 if none such)
! end2 is mass of outer edge where first zone drops back below burn_min2 erg/g/s
! end1 is mass of outer edge where first zone ends (i.e. eps_nuc < burn_min1)
! similar for the second zone
epsnuc_M_1 ! start1 for 1st zone
epsnuc_M_2 ! start2
epsnuc_M_3 ! end2
epsnuc_M_4 ! end1
epsnuc_M_5 ! start1 for 2nd zone
epsnuc_M_6 ! start2
epsnuc_M_7 ! end2
epsnuc_M_8 ! end1
! you might want to get a more complete list of burning regions by using the following
!burning_regions <integer>
! the <integer> is the number of regions to report
! there will be 2*<integer> columns for this in the log file, 2 for each region.
! the first column for a region gives int(sign(val)*log10(max(1,abs(val))))
! where val = ergs/gm/sec nuclear energy minus all neutrino losses.
! the second column for a region gives the q location of the top of the region
! entries for extra columns after the last region in the star will have a value of -9999
! all regions are included starting from the center, so the bottom of one region
! is the top of the previous one.
! since we start at the center, the bottom of the 1st region is q=0 and top of last is q=1.
! the columns in the log file will have names like 'burn_type_1' and 'burn_qtop_1'
!burn_relr_regions <integer>
! same as above, but locations given as r/rstar instead of m/mstar.
! the columns in the log file will have names like 'burn_relr_type_1' and 'burn_relr_top_1'
! if the star has too many regions to report them all,
! the smallest regions will be merged with neighbors for reporting purposes only.
!----------------------------------------------------------------------------------------------
!# information about core and envelope
!## helium core
he_core_mass
!he_core_radius
!he_core_lgT
!he_core_lgRho
!he_core_L
!he_core_v
!he_core_omega
!he_core_omega_div_omega_crit
!he_core_k
!## CO core
co_core_mass
!CO_core
!co_core_radius
!co_core_lgT
!co_core_lgRho
!co_core_L
!co_core_v
!co_core_omega
!co_core_omega_div_omega_crit
!co_core_k
!## ONe core
one_core_mass
!one_core_radius
!one_core_lgT
!one_core_lgRho
!one_core_L
!one_core_v
!one_core_omega
!one_core_omega_div_omega_crit
!one_core_k
!## iron core
fe_core_mass
!fe_core_radius
!fe_core_lgT
!fe_core_lgRho
!fe_core_L
!fe_core_v
!fe_core_omega
!fe_core_omega_div_omega_crit
!fe_core_k
!## neuton rich core
neutron_rich_core_mass
!neutron_rich_core_radius
!neutron_rich_core_lgT
!neutron_rich_core_lgRho
!neutron_rich_core_L
!neutron_rich_core_v
!neutron_rich_core_omega
!neutron_rich_core_omega_div_omega_crit
!neutron_rich_core_k
!## envelope
!envelope_mass ! = star_mass - he_core_mass
!envelope_fraction_left ! = envelope_mass / (initial_mass - he_core_mass)
!h_rich_layer_mass ! = star_mass - he_core_mass
!he_rich_layer_mass ! = he_core_mass - c_core_mass
!co_rich_layer_mass
!----------------------------------------------------------------------------------------------
!# timescales
!dynamic_timescale ! dynamic timescale (seconds) -- estimated by 2*pi*sqrt(r^3/(G*m))
!kh_timescale ! kelvin-helmholtz timescale (years)
!mdot_timescale ! star_mass/abs(star_mdot) (years)
!kh_div_mdot_timescales ! kh_timescale/mdot_timescale
!nuc_timescale ! nuclear timescale (years) -- proportional to mass divided by luminosity
!dt_cell_collapse ! min time for any cell to collapse at current velocities
!dt_div_dt_cell_collapse
!dt_div_max_tau_conv ! dt/ maximum conv timescale
!dt_div_min_tau_conv ! dt/ minimum conv timescale
!min_dr_div_cs ! min over all cells of dr/csound (seconds)
!min_dr_div_cs_k ! location of min
!log_min_dr_div_cs ! log10 min dr_div_csound (seconds)
!min_dr_div_cs_yr ! min over all cells of dr/csound (years)
!log_min_dr_div_cs_yr ! log10 min dr_div_csound (years)
!dt_div_min_dr_div_cs
!log_dt_div_min_dr_div_cs
!min_t_eddy ! minimum value of scale_height/conv_velocity
!----------------------------------------------------------------------------------------------
!# conditions at or near the surface of the model
!## conditions at the photosphere
!effective_T
!Teff
log_Teff ! log10 effective temperature
! Teff is calculated using Stefan-Boltzmann relation L = 4 pi R^2 sigma Teff^4,
! where L and R are evaluated at the photosphere (tau_factor < 1)
! or surface of the model (tau_factor >= 1) when photosphere is not inside the model.
!photosphere_black_body_T
!photosphere_cell_T ! temperature at model location closest to the photosphere, not necessarily Teff
!photosphere_cell_log_T
!photosphere_cell_density
!photosphere_cell_log_density
!photosphere_cell_opacity
!photosphere_cell_log_opacity
!photosphere_L ! Lsun units
!photosphere_log_L ! Lsun units
!photosphere_r ! Rsun units
!photosphere_log_r ! Rsun units
!photosphere_m ! Msun units
!photosphere_v_km_s
!photosphere_cell_k
!photosphere_column_density
!photosphere_csound
!photosphere_log_column_density
!photosphere_opacity
!photosphere_v_div_cs
!photosphere_xm
!photosphere_cell_free_e
!photosphere_cell_log_free_e
!photosphere_logg
!photosphere_T
!## conditions at or near the surface of the model (outer edge of outer cell)
!luminosity ! luminosity in Lsun units
!luminosity_ergs_s ! luminosity in cgs units
log_L ! log10 luminosity in Lsun units
!log_L_ergs_s ! log10 luminosity in cgs units
!radius ! Rsun
log_R ! log10 radius in Rsun units
!radius_cm
!log_R_cm
log_g ! log10 gravity
!gravity
!log_Ledd
!log_L_div_Ledd ! log10(L/Leddington)
!lum_div_Ledd
!log_surf_optical_depth
surface_optical_depth
!log_surf_cell_opacity ! old name was log_surf_opacity
!log_surf_cell_P ! old name was log_surf_P
!log_surf_cell_pressure ! old name was log_surf_pressure
!log_surf_cell_density ! old name was log_surf_density
!log_surf_cell_temperature ! old name was log_surf_temperature
!surface_cell_temperature ! old name was surface_temperature
!log_surf_cell_z ! old name was log_surf_z
!surface_cell_entropy ! in units of kerg per baryon
! old name was surface_entropy
!v_surf ! (cm/s)
!v_surf_km_s ! (km/s)
v_div_csound_surf ! velocity divided by sound speed at outermost grid point
!v_div_csound_max ! max value of velocity divided by sound speed at face
!v_div_vesc
!v_phot_km_s
!v_surf_div_escape_v
!v_surf_div_v_kh ! v_surf/(photosphere_r/kh_timescale)
!surf_avg_j_rot
!surf_avg_omega
!surf_avg_omega_crit
!surf_avg_omega_div_omega_crit
!surf_avg_v_rot ! km/sec rotational velocity at equator
!surf_avg_v_crit ! critical rotational velocity at equator
!surf_avg_v_div_v_crit
!surf_avg_Lrad_div_Ledd
!surf_avg_logT
!surf_avg_logRho
!surf_avg_opacity
! Gravity Darkening, reports the surface averaged L/Lsun and Teff (K) caused by
! gravity darkening in rotating stars. Based on the model of Espinosa Lara & Rieutord (2011)
! 'polar' refers to the line of sight being directed along the rotation axis of the star
! 'equatorial' refers to the line of sight coincident with the stellar equator
!grav_dark_L_polar !Lsun
!grav_dark_Teff_polar !K
!grav_dark_L_equatorial !Lsun
!grav_dark_Teff_equatorial !K
!surf_escape_v ! cm/s
!v_wind_Km_per_s ! Km/s
! = 1d-5*s% opacity(1)*max(0d0,-s% mstar_dot)/ &
! (4*pi*s% photosphere_r*Rsun*s% tau_base)
! Lars says:
! wind_mdot = 4*pi*R^2*rho*v_wind
! tau = integral(opacity*rho*dr) from R to infinity
! so tau = opacity*wind_mdot/(4*pi*R*v_wind) at photosphere
! or v_wind = opacity*wind_mdot/(4*pi*R*tau) at photosphere
!rotational_mdot_boost ! factor for increase in mass loss mdot due to rotation
!log_rotational_mdot_boost ! log factor for increase in mass loss mdot due to rotation
!surf_r_equatorial_div_r_polar
!surf_r_equatorial_div_r
!surf_r_polar_div_r
!----------------------------------------------------------------------------------------------
!# conditions near center
log_center_T ! temperature
log_center_Rho ! density
log_center_P ! pressure
! shorter names for above
log_cntr_P
log_cntr_Rho
log_cntr_T
!center_T ! temperature
!center_Rho ! density
!center_P ! pressure
!center_degeneracy ! the electron chemical potential in units of k*T
!center_gamma ! plasma interaction parameter
center_mu
center_ye
center_abar
!center_zbar
!center_eps_grav
!center_non_nuc_neu
!center_eps_nuc
!d_center_eps_nuc_dlnT
!d_center_eps_nuc_dlnd
!log_center_eps_nuc
!center_entropy ! in units of kerg per baryon
!max_entropy ! in units of kerg per baryon
!fe_core_infall
!non_fe_core_infall
!non_fe_core_rebound
!max_infall_speed
!compactness_parameter ! (m/Msun)/(R(m)/1000km) for m = 2.5 Msun
!compactness
!m4 ! Mass co-ordinate where entropy=4
! mu4 is sensitive to the choice of how much dm/dr you average over, thus we average dm and dr over M(entropy=4) and M(entropy=4)+0.3Msun
!mu4 ! dM(Msun)/dr(1000km) where entropy=4
!center_omega
!center_omega_div_omega_crit
!----------------------------------------------------------------------------------------------
!# abundances
!species ! size of net
!## mass fractions near center
! the following controls automatically add columns for all of the isos that are in the current net
!add_center_abundances
!add_log_center_abundances
! individual central mass fractions (as many as desired)
center h1
center he4
center c12
center o16
! individual log10 central mass fractions (as many as desired)
!log_center h1
!log_center he4
! etc.
!## mass fractions near surface
! the following controls automatically add columns for all of the isos that are in the current net
!add_surface_abundances
!add_log_surface_abundances
! individual surface mass fractions (as many as desired)
surface h1
surface he4
surface c12
surface o16
! etc.
! individual log10 surface mass fractions (as many as desired)
!log_surface h1
!log_surface he4
!## mass fractions for entire star
! the following controls automatically add columns for all of the isos that are in the current net
!add_average_abundances
!add_log_average_abundances
! individual average mass fractions (as many as desired)
!average h1
!average he4
! etc.
! individual log10 average mass fractions (as many as desired)
!log_average h1
!log_average he4
! etc.
!## mass totals for entire star (in Msun units)
! the following controls automatically add columns for all of the isos that are in the current net
!add_total_mass
!add_log_total_mass
! individual mass totals for entire star (as many as desired)
total_mass h1
total_mass he4
! etc.
! individial log10 mass totals for entire star (in Msun units)
!log_total_mass h1
!log_total_mass he4
! etc.
!----------------------------------------------------------------------------------------------
!# info at specific locations
!## info at location of max temperature
!max_T
!log_max_T
!----------------------------------------------------------------------------------------------
!# information about shocks
!## info about outermost outward moving shock
! excluding locations with q > max_q_for_outer_mach1_location
! returns values at location of max velocity
!shock_mass ! baryonic (Msun)
!shock_mass_gm ! baryonic (grams)
!shock_q
!shock_radius ! (Rsun)
!shock_radius_cm ! (cm)
!shock_velocity
!shock_csound
!shock_v_div_cs
!shock_lgT
!shock_lgRho
!shock_lgP
!shock_gamma1
!shock_entropy
!shock_tau
!shock_k
!shock_pre_lgRho
!----------------------------------------------------------------------------------------------
!# asteroseismology
!delta_nu ! large frequency separation for p-modes (microHz)
! 1e6/(seconds for sound to cross diameter of star)
!delta_Pg ! g-mode period spacing for l=1 (seconds)
! sqrt(2) pi^2/(integral of brunt_N/r dr)
!log_delta_Pg
!nu_max ! estimate from scaling relation (microHz)
! nu_max = nu_max_sun * M/Msun / ((R/Rsun)^2 (Teff/Teff_sun)^0.5)
! with nu_max_sun = 3100 microHz, Teff_sun = 5777
!nu_max_3_4th_div_delta_nu ! nu_max^0.75/delta_nu
!acoustic_cutoff ! 0.5*g*sqrt(gamma1*rho/P) at surface
!acoustic_radius ! integral of dr/csound (seconds)
!ng_for_nu_max ! = 1 / (nu_max*delta_Pg)
! period for g-mode with frequency nu_max = nu_max_ng*delta_Pg
!gs_per_delta_nu ! delta_nu / (nu_max**2*delta_Pg)
! number of g-modes per delta_nu at nu_max
!int_k_r_dr_nu_max_Sl1 ! integral of k_r*dr where nu < N < Sl for nu = nu_max, l=1
!int_k_r_dr_2pt0_nu_max_Sl1 ! integral of k_r*dr where nu < N < Sl for nu = nu_max*2, l=1
!int_k_r_dr_0pt5_nu_max_Sl1 ! integral of k_r*dr where nu < N < Sl for nu = nu_max/2, l=1
!int_k_r_dr_nu_max_Sl2 ! integral of k_r*dr where nu < N < Sl for nu = nu_max, l=2
!int_k_r_dr_2pt0_nu_max_Sl2 ! integral of k_r*dr where nu < N < Sl for nu = nu_max*2, l=2
!int_k_r_dr_0pt5_nu_max_Sl2 ! integral of k_r*dr where nu < N < Sl for nu = nu_max/2, l=2
!int_k_r_dr_nu_max_Sl3 ! integral of k_r*dr where nu < N < Sl for nu = nu_max, l=3
!int_k_r_dr_2pt0_nu_max_Sl3 ! integral of k_r*dr where nu < N < Sl for nu = nu_max*2, l=3
!int_k_r_dr_0pt5_nu_max_Sl3 ! integral of k_r*dr where nu < N < Sl for nu = nu_max/2, l=3
!----------------------------------------------------------------------------------------------
!# energy information
!total_energy ! at end of step
!log_total_energy ! log(abs(total_energy))
!total_energy_after_adjust_mass ! after mass adjustments
! shorter versions of above
!tot_E
!log_tot_E
!total_gravitational_energy
!log_total_gravitational_energy ! log(abs(total_gravitational_energy))
!total_gravitational_energy_after_adjust_mass
! shorter versions of above
!tot_PE
!log_tot_PE
!total_internal_energy
!log_total_internal_energy
!total_internal_energy_after_adjust_mass
! shorter versions of above
!tot_IE
!log_tot_IE
!total_radial_kinetic_energy
!log_total_radial_kinetic_energy
!total_radial_kinetic_energy_after_adjust_mass
! shorter versions of above (does not include rot KE)
!tot_KE
!log_tot_KE
!total_turbulent_energy
!log_total_turbulent_energy
!total_turbulent_energy_after_adjust_mass
!tot_Et
!log_tot_Et
!total_energy_foe
!tot_IE_div_IE_plus_KE
!total_IE_div_IE_plus_KE
!total_entropy
!total_eps_grav
!total_energy_sources_and_sinks ! for this step
!total_nuclear_heating
!total_non_nuc_neu_cooling
!total_irradiation_heating
!total_extra_heating ! extra heat integrated over the model times dt (erg)
!total_WD_sedimentation_heating
!rel_run_E_err
!rel_E_err
!abs_rel_E_err
!log_rel_E_err
!tot_e_equ_err
!tot_e_err
!error_in_energy_conservation ! for this step
! = total_energy - (total_energy_start + total_energy_sources_and_sinks)
!cumulative_energy_error ! = sum over all steps of error_in_energy_conservation
!rel_cumulative_energy_error ! = cumulative_energy_error/total_energy
!log_rel_cumulative_energy_error ! = log10 of rel_cumulative_energy_error
!log_rel_run_E_err ! shorter name for rel_cumulative_energy_error
!rel_error_in_energy_conservation ! = error_in_energy_conservation/total_energy
!log_rel_error_in_energy_conservation
!virial_thm_P_avg
!virial_thm_rel_err
!work_inward_at_center
!work_outward_at_surface
!----------------------------------------------------------------------------------------------
!# rotation
!total_angular_momentum
!log_total_angular_momentum
!i_rot_total ! moment of inertia
!total_rotational_kinetic_energy
!log_total_rotational_kinetic_energy
!total_rotational_kinetic_energy_after_adjust_mass
!----------------------------------------------------------------------------------------------
!# velocities
!avg_abs_v_div_cs
!log_avg_abs_v_div_cs
!max_abs_v_div_cs
!log_max_abs_v_div_cs
!avg_abs_v
!log_avg_abs_v
!max_abs_v
!log_max_abs_v
!u_surf
!u_surf_km_s
!u_div_csound_surf
!u_div_csound_max
!infall_div_cs
!----------------------------------------------------------------------------------------------
!# misc
!e_thermal ! sum over all zones of Cp*T*dm
!## eos
!logQ_max ! logQ = logRho - 2*logT + 12
!logQ_min
!gamma1_min
!## core mixing
!mass_semiconv_core
!## H-He boundary
!diffusion_time_H_He_bdy
!temperature_H_He_bdy
!## optical depth and opacity
!one_div_yphot
!log_one_div_yphot
!log_min_opacity
!min_opacity
!log_tau_center
!log_max_tau_conv
!max_tau_conv
!log_min_tau_conv
!min_tau_conv
!tau_qhse_yrs
!## other
!Lsurf_m
!dlnR_dlnM
!h1_czb_mass ! location (in Msun units) of base of 1st convection zone above he core
!kh_mdot_limit
!log_cntr_dr_cm
!min_Pgas_div_P
!surf_c12_minus_o16 ! this is useful for seeing effects of dredge up on AGB
!surf_num_c12_div_num_o16
!phase_of_evolution ! Integer mapping to the type of evolution see star_data/public/star_data_def.inc for definitions
!## MLT++
!gradT_excess_alpha
!gradT_excess_min_beta
!gradT_excess_max_lambda
!max_L_rad_div_Ledd
!max_L_rad_div_Ledd_div_phi_Joss
!## RTI
!rti_regions <num>
!## Ni & Co
!total_ni_co_56
!## internal structure constants
! this is evaluated assuming a spherical star and does not account for rotation
!apsidal_constant_k2
!----------------------------------------------------------------------------------------------
!# accretion
!k_below_const_q
!q_below_const_q
!logxq_below_const_q
!k_const_mass
!q_const_mass
!logxq_const_mass
!k_below_just_added
!q_below_just_added
!logxq_below_just_added
!k_for_test_CpT_absMdot_div_L
!q_for_test_CpT_absMdot_div_L
!logxq_for_test_CpT_absMdot_div_L
!----------------------------------------------------------------------------------------------
!# Color output
! Outputs the bolometric correction (bc) for the star in filter band ``filter'' (case sensitive)
!bc filter
! Outputs the absolute magnitude for the star in filter band ``filter'' (case sensitive)
!abs_mag filter
! Adds all the bc's to the output
!add_bc
! Adds all the absolute magnitudes to the output
!add_abs_mag
! Outputs luminosity in filter band ``filter'' (erg s^-1) (case sensitive)
! lum_band filter
! Adds all the filter band luminosities to the output (erg s^-1)
! add_lum_band
! Outputs log luminosity in filter band ``filter'' (log erg s^-1) (case sensitive)
! log_lum_band filter
! Adds all the filter band luminosities to the output (log erg s^-1)
! add_log_lum_band
!----------------------------------------------------------------------------------------------
!# RSP
!rsp_DeltaMag ! absolute magnitude difference between minimum and maximum light (mag)
!rsp_DeltaR ! R_max - R_min difference in the max and min radius (Rsun)
!rsp_GREKM ! fractional growth of the kinetic energy per pulsation period ("nonlinear growth rate") - see equation 5 in MESA5