-
Notifications
You must be signed in to change notification settings - Fork 338
/
Copy pathreal_esrgan.py
139 lines (107 loc) · 3.88 KB
/
real_esrgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import sys
import time
import ailia
import cv2
import numpy as np
sys.path.append('../../util')
# logger
from logging import getLogger # noqa: E402
from image_utils import imread # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from arg_utils import get_base_parser, get_savepath, update_parser # noqa: E402
from webcamera_utils import get_capture, get_writer # noqa: E402
from real_esrgan_utils import RealESRGAN
from real_esrgan_utils_v3 import RealESRGANv3
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
INPUT_IMAGE_PATH = 'input.jpg'
SAVE_IMAGE_PATH = 'output.jpg'
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/real-esrgan/'
# =======================
# Arguments Parser Config
# =======================
parser = get_base_parser(
'Real-ESRGAN',
INPUT_IMAGE_PATH,
SAVE_IMAGE_PATH,
)
parser.add_argument(
'-m', '--model', metavar='MODEL_NAME',
default='RealESRGAN',
help='[RealESRGAN, RealESRGAN_anime, RealESRGAN_anime_v3]'
)
args = update_parser(parser)
MODEL_PATH = args.model + '.opt.onnx.prototxt'
WEIGHT_PATH = args.model + '.opt.onnx'
if args.model == "RealESRGAN_anime_v3":
RealESRGAN = RealESRGANv3
else:
RealESRGAN = RealESRGAN
def enhance_image():
for image_path in args.input:
# prepare input data
img = imread(image_path, cv2.IMREAD_UNCHANGED)
# net initialize
mem_mode = ailia.get_memory_mode(reduce_constant=True, ignore_input_with_initializer=True, reduce_interstage=False, reuse_interstage=True)
model = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id, memory_mode=mem_mode)
model.set_input_shape((3,img.shape[1],img.shape[0]))
upsampler = RealESRGAN(model)
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
for i in range(5):
start = int(round(time.time() * 1000))
output = upsampler.enhance(img)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
else:
output = upsampler.enhance(img)
savepath = get_savepath(args.savepath, image_path)
logger.info(f'saved at : {savepath}')
cv2.imwrite(savepath, output)
logger.info('Script finished successfully.')
def enhance_video():
# net initialize
model = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
upsampler = RealESRGAN(model)
capture = get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
logger.warning(
'currently, video results cannot be output correctly...'
)
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
save_h, save_w = calc_adjust_fsize(f_h, f_w, IMAGE_HEIGHT, IMAGE_WIDTH)
writer = get_writer(args.savepath, save_h, save_w * 2)
else:
writer = None
frame_shown = False
while (True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
h, w = frame.shape[0], frame.shape[1]
img = frame[h//2:h//2+h//4, w//2:w//2+w//4, :]
# inference
output = upsampler.enhance(img)
#plot result
cv2.imshow('frame', output)
frame_shown = True
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
if args.video:
enhance_video()
else:
enhance_image()
if __name__ == '__main__':
main()