(Image from https://github.com/simaiden/Clothing-Detection/blob/master/tests/0000003.jpg)
Shape : (1, 3, 416, 416)
Range : [0.0, 1.0]
modanet
df2
DATASETS_CATEGORY = {
'modanet': [
"bag", "belt", "boots", "footwear", "outer", "dress", "sunglasses",
"pants", "top", "shorts", "skirt", "headwear", "scarf/tie"
],
'df2': [
"short sleeve top", "long sleeve top", "short sleeve outwear", "long sleeve outwear",
"vest", "sling", "shorts", "trousers", "skirt", "short sleeve dress",
"long sleeve dress", "vest dress", "sling dress"
]
}
Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.
For the sample image,
$ python3 clothing-detection.py
If you want to specify the input image, put the image path after the --input
option.
You can use --savepath
option to change the name of the output file to save.
$ python3 clothing-detection.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH
By adding the --video
option, you can input the video.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 clothing-detection.py --video VIDEO_PATH
By adding the -d df2
option, you can use df2 model.
ONNX Runtime
ONNX opset=10