-
Notifications
You must be signed in to change notification settings - Fork 338
/
Copy pathsilero-vad.py
129 lines (101 loc) · 3.48 KB
/
silero-vad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
import sys
import time
import numpy as np
import librosa
import soundfile as sf
import ailia
from pprint import pprint
from utils_vad import (get_speech_timestamps,
save_audio,
read_audio,
VADIterator,
collect_chunks,
OnnxWrapper)
# import original modules
sys.path.append('../../util')
from arg_utils import get_base_parser, update_parser, get_savepath # noqa: E402
from model_utils import check_and_download_models # noqa: E402
# logger
from logging import getLogger # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
WEIGHT_PATH = 'silero_vad.onnx'
MODEL_PATH = 'silero_vad.onnx.prototxt'
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/silero-vad/'
WAVE_PATH = "en_example.wav"
SAVE_PATH = 'only_speech.wav'
# Audio
SAMPLING_RATE = 16000
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser(
'Silero VAD', WAVE_PATH, SAVE_PATH, input_ftype='audio', fp16_support=False
)
parser.add_argument(
'--onnx',
action='store_true',
help='execute onnxruntime version.'
)
args = update_parser(parser)
# ======================
# Logic
# ======================
def audio_recognition(model):
# **Speech timestapms from full audio**
wav = read_audio('en_example.wav', sampling_rate=SAMPLING_RATE)
# get speech timestamps from full audio file
speech_timestamps = get_speech_timestamps(wav, model, sampling_rate=SAMPLING_RATE)
logger.info("Speech timestamp")
logger.info(speech_timestamps)
# merge all speech chunks to one audio
save_audio('only_speech.wav',
collect_chunks(speech_timestamps, wav), sampling_rate=SAMPLING_RATE)
## using VADIterator class
vad_iterator = VADIterator(model)
wav = read_audio(f'en_example.wav', sampling_rate=SAMPLING_RATE)
logger.info("VADIterator")
window_size_samples = 1536 # number of samples in a single audio chunk
for i in range(0, len(wav), window_size_samples):
chunk = wav[i: i+ window_size_samples]
if len(chunk) < window_size_samples:
break
speech_dict = vad_iterator(chunk, return_seconds=True)
if speech_dict:
logger.info(speech_dict)
vad_iterator.reset_states() # reset model states after each audio
## just probabilities
logger.info("Speech Probablities")
wav = read_audio('en_example.wav', sampling_rate=SAMPLING_RATE)
speech_probs = []
window_size_samples = 1536
for i in range(0, len(wav), window_size_samples):
chunk = wav[i: i+ window_size_samples]
if len(chunk) < window_size_samples:
break
speech_prob = model(chunk, SAMPLING_RATE).item()
speech_probs.append(speech_prob)
vad_iterator.reset_states() # reset model states after each audio
logger.info(speech_probs[:10]) # first 10 chunks predicts
logger.info("Script finish successfully.")
# ======================
# Main
# ======================
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
if not args.onnx:
env_id = args.env_id
session = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=env_id)
else:
import onnxruntime
session = onnxruntime.InferenceSession(WEIGHT_PATH)
model = OnnxWrapper('silero_vad.onnx')
model.session = session
model.ailia = not args.onnx
audio_recognition(model)
if __name__ == '__main__':
main()