-
Notifications
You must be signed in to change notification settings - Fork 338
/
Copy pathdtln.py
213 lines (179 loc) · 7.59 KB
/
dtln.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import sys
import time
from logging import getLogger
import onnxruntime
import numpy as np
import soundfile as sf
import ailia
# import original modules
sys.path.append('../../util')
from model_utils import check_and_download_models # noqa
from arg_utils import get_base_parser, get_savepath, update_parser # noqa
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
WEIGHT1_PATH = "dtln1.onnx"
MODEL1_PATH = "dtln1.onnx.prototxt"
WEIGHT2_PATH = "dtln2.onnx"
MODEL2_PATH = "dtln2.onnx.prototxt"
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/dtln/'
SAMPLE_RATE = 16000
WAV_PATH = '1221-135766-0000.wav'
SAVE_WAV_PATH = 'output.wav'
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser(
'Dual-signal Transformation LSTM Network', WAV_PATH, SAVE_WAV_PATH, input_ftype='audio'
)
parser.add_argument(
'--onnx',
action='store_true',
help='By default, the ailia SDK is used, but with this option, you can switch to using ONNX Runtime'
)
parser.add_argument(
'--shift',
default=128, type=int,
)
args = update_parser(parser)
block_shift = args.shift
# ======================
# Main functions
# ======================
def predict(audio,models):
block_len = 512
out_file = np.zeros((len(audio)))
# create buffer
in_buffer = np.zeros((block_len)).astype('float32')
out_buffer = np.zeros((block_len)).astype('float32')
# calculate number of blocks
num_blocks = (audio.shape[0] - (block_len-block_shift)) // block_shift
# iterate over the number of blcoks
time_array = []
inp_shape = [(1, 1, 257) ,(1, 2, 128, 2)]
model_input_names_1 = ['input_2', 'input_3']
interpreter_1 = models[0]
interpreter_2 = models[1]
model_inputs_1 = {}
model_inputs_1[model_input_names_1[0]] = np.zeros(
[dim if isinstance(dim, int) else 1 for dim in inp_shape[0]],
dtype=np.float32)
model_inputs_1[model_input_names_1[1]] = np.zeros(
[dim if isinstance(dim, int) else 1 for dim in inp_shape[1]],
dtype=np.float32)
model_input_names_2 = ['input_4','input_5']
model_inputs_2 = {}
inp_shape = [(1, 1, 512) ,(1, 2, 128, 2)]
model_inputs_2[model_input_names_2[0]] = np.zeros(
[dim if isinstance(dim, int) else 1 for dim in inp_shape[0]],
dtype=np.float32)
model_inputs_2[model_input_names_2[1]] = np.zeros(
[dim if isinstance(dim, int) else 1 for dim in inp_shape[1]],
dtype=np.float32)
for idx in range(num_blocks):
start_time = time.time()
# shift values and write to buffer
in_buffer[:-block_shift] = in_buffer[block_shift:]
in_buffer[-block_shift:] = audio[idx*block_shift:(idx*block_shift)+block_shift]
# calculate fft of input block
in_block_fft = np.fft.rfft(in_buffer)
in_mag = np.abs(in_block_fft)
in_phase = np.angle(in_block_fft)
# reshape magnitude to input dimensions
in_mag = np.reshape(in_mag, (1,1,-1)).astype('float32')
# set block to input
model_inputs_1[model_input_names_1[0]] = in_mag
# run calculation
if args.onnx:
model_outputs_1 = interpreter_1.run([],{'input_2':model_inputs_1['input_2'],'input_3':model_inputs_1['input_3']})
else:
inputs = [model_inputs_1['input_2'],model_inputs_1['input_3']]
model_outputs_1 = interpreter_1.run(inputs)
# get the output of the first block
out_mask = model_outputs_1[0]
# set out states back to input
model_inputs_1[model_input_names_1[1]] = model_outputs_1[1]
# calculate the ifft
estimated_complex = in_mag * out_mask * np.exp(1j * in_phase)
estimated_block = np.fft.irfft(estimated_complex)
# reshape the time domain block
estimated_block = np.reshape(estimated_block, (1,1,-1)).astype('float32')
# set tensors to the second block
model_inputs_2[model_input_names_2[0]] = estimated_block
# run calculation
if args.onnx:
model_outputs_2 = interpreter_2.run([],{'input_4':model_inputs_2['input_4'],'input_5':model_inputs_2['input_5']})
else:
inputs = [model_inputs_2['input_4'],model_inputs_2['input_5']]
model_outputs_2 = interpreter_2.run(inputs)
# get output
out_block = model_outputs_2[0]
# set out states back to input
model_inputs_2[model_input_names_2[1]] = model_outputs_2[1]
# shift values and write to buffer
out_buffer[:-block_shift] = out_buffer[block_shift:]
out_buffer[-block_shift:] = np.zeros((block_shift))
out_buffer += np.squeeze(out_block)
# write block to output file
out_file[idx*block_shift:(idx*block_shift)+block_shift] = out_buffer[:block_shift]
time_array.append(time.time()-start_time)
return out_file
def recognize_from_audio(models):
inp_shape = [(1, 1, 257) ,(1, 2, 128, 2)]
model_input_names_1 = ['input_2', 'input_3']
model_inputs_1 = {}
model_inputs_1[model_input_names_1[0]] = np.zeros(
[dim if isinstance(dim, int) else 1 for dim in inp_shape[0]],
dtype=np.float32)
model_inputs_1[model_input_names_1[1]] = np.zeros(
[dim if isinstance(dim, int) else 1 for dim in inp_shape[1]],
dtype=np.float32)
model_input_names_2 = ['input_4','input_5']
model_inputs_2 = {}
inp_shape = [(1, 1, 512) ,(1, 2, 128, 2)]
model_inputs_2[model_input_names_2[0]] = np.zeros(
[dim if isinstance(dim, int) else 1 for dim in inp_shape[0]],
dtype=np.float32)
model_inputs_2[model_input_names_2[1]] = np.zeros(
[dim if isinstance(dim, int) else 1 for dim in inp_shape[1]],
dtype=np.float32)
# input audio loop
for audio_path in args.input:
logger.info(audio_path)
# load audio file
audio,fs = sf.read(audio_path)
# check for sampling rate
if fs != 16000:
print('This model only supports 16k sampling rate.')
continue
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
start = int(round(time.time() * 1000))
output,sr = predict(audio, models)
end = int(round(time.time() * 1000))
estimation_time = (end - start)
logger.info(f'\ttotal processing time {estimation_time} ms')
else:
output = predict(audio, models)
# save result
savepath = get_savepath(args.savepath, audio_path, ext='.wav')
logger.info(f'saved at : {savepath}')
sf.write(savepath, output, fs)
logger.info('Script finished successfully.')
def main():
check_and_download_models(WEIGHT1_PATH, MODEL1_PATH, REMOTE_PATH)
check_and_download_models(WEIGHT2_PATH, MODEL2_PATH, REMOTE_PATH)
env_id = args.env_id
if args.onnx:
models = [onnxruntime.InferenceSession(WEIGHT1_PATH),
onnxruntime.InferenceSession(WEIGHT2_PATH)]
else:
models = [ailia.Net(MODEL1_PATH,WEIGHT1_PATH, env_id = env_id),
ailia.Net(MODEL2_PATH,WEIGHT2_PATH, env_id = env_id)]
# initialize
recognize_from_audio(models)
if __name__ == '__main__':
main()