-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluate_cta.py
638 lines (524 loc) · 24 KB
/
evaluate_cta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
import os
import re
import sys
import json
import logging
import numpy as np
import os.path as osp
from tqdm import tqdm
import torch
import torch.nn as nn
from torch.optim import Adam
from torch.nn import BCEWithLogitsLoss
from torch_geometric.data import InMemoryDataset
from torch_geometric.loader import DataLoader
from torchmetrics import Precision, Recall, F1Score, AveragePrecision
import pytorch_lightning as pl
from pytorch_lightning import seed_everything
from pytorch_lightning.loggers import TensorBoardLogger
import transformers
from transformers import AutoTokenizer, AutoConfig, HfArgumentParser
from transformers.optimization import AdamW, get_scheduler
from data import BipartiteData
from model import Encoder
from typing import Optional
from dataclasses import dataclass, field, fields
#********************************* set up arguments *********************************
@dataclass
class DataArguments:
"""
Arguments pertaining to which config/tokenizer we are going use.
"""
tokenizer_config_type: str = field(
default='bert-base-uncased',
metadata={
"help": "bert-base-cased, bert-base-uncased etc"
},
)
data_path: str = field(default='./data/col_ann/', metadata={"help": "data path"})
max_token_length: int = field(
default=64,
metadata={
"help": "The maximum total input token length for cell/caption/header after tokenization. Sequences longer "
"than this will be truncated."
},
)
max_row_length: int = field(
default=30,
metadata={
"help": "The maximum total input rows for a table"
},
)
max_column_length: int = field(
default=20,
metadata={
"help": "The maximum total input columns for a table"
},
)
label_type_num: int = field(
default=255,
metadata={
"help": "The total label types"
},
)
num_workers: Optional[int] = field(
default=8,
metadata={"help": "Number of workers for dataloader"},
)
valid_ratio: float = field(
default=0.3,
metadata={"help": "Number of workers for dataloader"},
)
@dataclass
class OptimizerConfig:
batch_size: int = 256
base_learning_rate: float = 1e-3
weight_decay: float = 0.02
adam_beta1: float = 0.9
adam_beta2: float = 0.98
adam_epsilon: float = 1e-5
lr_scheduler_type: transformers.SchedulerType = "linear"
warmup_step_ratio: float = 0.1
seed: int = 42
optimizer: str = "Adam"
adam_w_mode: bool = True
save_every_n_epochs: int=1
save_top_k: int=1
checkpoint_path: str=''
def get_optimizer(self, optim_groups, learning_rate):
optimizer = self.optimizer.lower()
optim_cls = {
"adam": AdamW if self.adam_w_mode else Adam,
}[optimizer]
args = [optim_groups]
kwargs = {
"lr": learning_rate,
"eps": self.adam_epsilon,
"betas": (self.adam_beta1, self.adam_beta2),
}
if optimizer in {"fusedadam", "fusedlamb"}:
kwargs["adam_w_mode"] = self.adam_w_mode
optimizer = optim_cls(*args, **kwargs)
return optimizer
def vocab2lbl(label_file):
lbl_dict = {}
with open(label_file, 'r') as f:
for line in f.readlines():
id, name = line.strip().split()
lbl_dict[name] = int(id)
return lbl_dict
class CTAHyperGraphDataset(InMemoryDataset):
def __init__(self, data_args, tokenizer, type):
self.data_args = data_args
self.tokenizer = tokenizer
self.type = type
self.raw_data = json.load(open(osp.join(self.data_args.data_path,'preprocessed_{}.json'.format(self.type, 'r'))))
super().__init__(self.data_args.data_path)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def processed_file_names(self):
return ['{}_data.pt'.format(self.type)]
def process(self):
# Read data into huge `Data` list.
data_list = self._table2graph(self.raw_data)
data, slices = self.collate(data_list)
torch.save((data, slices), self.processed_paths[0])
def _tokenize_word(self, word):
# refer to numBERT: https://github.com/google-research/google-research/tree/master/numbert
number_pattern = re.compile(
r"(\d+)\.?(\d*)") # Matches numbers in decimal form.
def number_repl(matchobj):
"""Given a matchobj from number_pattern, it returns a string writing the corresponding number in scientific notation."""
pre = matchobj.group(1).lstrip("0")
post = matchobj.group(2)
if pre and int(pre):
# number is >= 1
exponent = len(pre) - 1
else:
# find number of leading zeros to offset.
exponent = -re.search("(?!0)", post).start() - 1
post = post.lstrip("0")
return (pre + post).rstrip("0") + " scinotexp " + str(exponent)
def apply_scientific_notation(line):
"""Convert all numbers in a line to scientific notation."""
res = re.sub(number_pattern, number_repl, line)
return res
word = apply_scientific_notation(word)
wordpieces = self.tokenizer.tokenize(word)[:self.data_args.max_token_length]
mask = [1 for _ in range(len(wordpieces))]
while len(wordpieces)<self.data_args.max_token_length:
wordpieces.append('[PAD]')
mask.append(0)
return wordpieces, mask
def _table2graph(self, examples):
data_list = []
pos_count = torch.zeros(self.data_args.label_type_num, dtype=torch.float32)
for exm in tqdm(examples):
try:
tb = exm['table']
except:
tb = exm
cap = '' if tb['caption'] is None else tb['caption']
cap = ' '.join(cap.split()[:self.data_args.max_token_length]) # filter too long caption
header = [' '.join(h['name'].split()[:self.data_args.max_token_length]) for h in tb['header']][:self.data_args.max_column_length]
data = [row[:self.data_args.max_column_length] for row in tb['data'][:self.data_args.max_row_length]]
labels = tb['label_ids']
assert len(data[0]) == len(header)
wordpieces_xs_all, mask_xs_all = [], []
wordpieces_xt_all, mask_xt_all = [], []
nodes, edge_index = [], []
# caption to hyper-edge (t node)
if not cap:
wordpieces = ['[TAB]'] + ['[PAD]' for _ in range(self.data_args.max_token_length - 1)]
mask = [1] + [0 for _ in range(self.data_args.max_token_length - 1)]
wordpieces_xt_all.append(wordpieces)
mask_xt_all.append(mask)
else:
wordpieces, mask = self._tokenize_word(cap)
wordpieces_xt_all.append(wordpieces)
mask_xt_all.append(mask)
# header to hyper-edge (t node)
for head in header:
if not head:
wordpieces = ['[HEAD]'] + ['[PAD]' for _ in range(self.data_args.max_token_length - 1)]
mask = [1] + [0 for _ in range(self.data_args.max_token_length - 1)]
wordpieces_xt_all.append(wordpieces)
mask_xt_all.append(mask)
else:
wordpieces, mask = self._tokenize_word(head)
wordpieces_xt_all.append(wordpieces)
mask_xt_all.append(mask)
# row to hyper edge (t node)
for i in range(len(data)):
wordpieces = ['[ROW]'] + ['[PAD]' for _ in range(self.data_args.max_token_length- 1)]
mask = [1] + [0 for _ in range(self.data_args.max_token_length- 1)]
wordpieces_xt_all.append(wordpieces)
mask_xt_all.append(mask)
# cell to nodes (s node)
for row_i, row in enumerate(data):
for col_i, word in enumerate(row):
if not word:
wordpieces = ['[CELL]'] + ['[PAD]' for _ in range(self.data_args.max_token_length - 1)]
mask = [1] + [0 for _ in range(self.data_args.max_token_length - 1)]
else:
word = ' '.join(word.split()[:self.data_args.max_token_length])
wordpieces, mask = self._tokenize_word(word)
wordpieces_xs_all.append(wordpieces)
mask_xs_all.append(mask)
node_id = len(nodes)
nodes.append(node_id)
edge_index.append([node_id, 0]) # connect to table-level hyper-edge
edge_index.append([node_id, col_i+1]) # # connect to col-level hyper-edge
edge_index.append([node_id, row_i + 1 + len(header)]) # connect to row-level hyper-edge
# add label
label_ids = torch.zeros((len(header), self.data_args.label_type_num), dtype=torch.float32)
col_mask = torch.zeros(len(wordpieces_xt_all), dtype=torch.long)
for col_i, lbl in enumerate(labels):
col_mask[col_i+1] = 1 # 0 is caption
for lbl_i in lbl:
label_ids[col_i, lbl_i] = 1.0
pos_count[lbl_i] += 1
xs_ids = torch.tensor([self.tokenizer.convert_tokens_to_ids(x) for x in wordpieces_xs_all], dtype=torch.long)
xt_ids = torch.tensor([self.tokenizer.convert_tokens_to_ids(x) for x in wordpieces_xt_all], dtype=torch.long)
# check all 0 input
xs_tem = torch.count_nonzero(xs_ids, dim =1)
xt_tem = torch.count_nonzero(xt_ids, dim=1)
assert torch.count_nonzero(xs_tem) == len(xs_tem)
assert torch.count_nonzero(xt_tem) == len(xt_tem)
edge_index = torch.tensor(edge_index, dtype=torch.long).T
bigraph = BipartiteData(edge_index=edge_index, x_s=xs_ids, x_t=xt_ids, y=label_ids, col_mask = col_mask)
data_list.append(bigraph)
return data_list
class CTADataModule(pl.LightningDataModule):
def __init__(
self,
tokenizer,
data_args,
seed,
batch_size,
py_logger):
super().__init__()
self.data_args = data_args
self.tokenizer = tokenizer
self.seed = seed
self.batch_size = batch_size
self.py_logger = py_logger
self.py_logger.info("Using tabular data collator")
def json2table(self, data_dir, lbl_dict):
samples = []
with open(data_dir, 'r') as f:
data = json.load(f)
rows_count, columns_count = [], []
for tb in data:
id = tb[0]
cap = tb[4]
heads = tb[5]
content = tb[6]
labels = tb[-1]
assert len(labels) == len(heads)
label_ids = []
for lbl in labels:
label_ids.append([lbl_dict[l] for l in lbl])
row_count = max([cell[0][0] for col in content for cell in col]) + 1
rows_count.append(row_count)
columns_count.append(len(heads))
data = [['' for _ in range(len(heads))] for _ in range(row_count)]
for col in content:
for cell in col:
i, j = cell[0][0], cell[0][1]
data[i][j] = cell[1][1]
# cut long headers
if len(heads) > self.data_args.max_column_length:
def divide_chunks(l, n):
# looping till length l
for i in range(0, len(l), n):
yield l[i:i + n]
heads_list = list(divide_chunks(heads, self.data_args.max_column_length))
labels_list = list(divide_chunks(labels, self.data_args.max_column_length))
label_ids_list = list(divide_chunks(label_ids, self.data_args.max_column_length))
data_list = [[] for _ in range(len(heads_list))]
for row in data:
row_list = list(divide_chunks(row, self.data_args.max_column_length))
for i in range(len(row_list)):
data_list[i].append(row_list[i])
else:
heads_list = [heads]
labels_list = [labels]
label_ids_list = [label_ids]
data_list = [data]
for i in range(len(heads_list)):
heads = [{'name': h} for h in heads_list[i]]
sample = {'uuid':id, 'table':{'caption':cap, 'header': heads, 'data': data_list[i], 'labels': labels_list[i], 'label_ids': label_ids_list[i]}}
samples.append(sample)
return samples
def prepare_data(self) -> None:
self.py_logger.info(f"Preparing data... \n")
if not osp.exists(osp.join(self.data_args.data_path,'preprocessed_train.json')):
label_file = self.data_args.data_path + 'type_vocab.txt'
train_data_dir = self.data_args.data_path + 'train.table_col_type.json'
valid_data_dir = self.data_args.data_path + 'dev.table_col_type.json'
test_data_dir = self.data_args.data_path + 'test.table_col_type.json'
lbl_dict = vocab2lbl(label_file)
train_samples = self.json2table(train_data_dir, lbl_dict)
valid_samples = self.json2table(valid_data_dir, lbl_dict)
test_samples = self.json2table(test_data_dir, lbl_dict)
json.dump(train_samples, open(osp.join(self.data_args.data_path,'preprocessed_train.json'),'w'))
json.dump(valid_samples, open(osp.join(self.data_args.data_path, 'preprocessed_valid.json'), 'w'))
json.dump(test_samples, open(osp.join(self.data_args.data_path, 'preprocessed_test.json'), 'w'))
def setup(self, stage):
self.py_logger.info(f"Setting up... \n")
self.train_dataset = CTAHyperGraphDataset(self.data_args, self.tokenizer, 'train')
self.valid_dataset = CTAHyperGraphDataset(self.data_args, self.tokenizer, 'valid')
self.test_dataset = CTAHyperGraphDataset(self.data_args, self.tokenizer, 'test')
self.py_logger.info(
"Training dataset size {}, validating dataset size {}, testing dataset size {},.".format(len(self.train_dataset), len(self.valid_dataset), len(self.test_dataset)))
def train_dataloader(self):
"""This will be run every episode."""
return DataLoader(
self.train_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=self.data_args.num_workers
)
def val_dataloader(self):
return DataLoader(
self.valid_dataset,
batch_size=16,
num_workers=self.data_args.num_workers)
def test_dataloader(self):
return DataLoader(
self.test_dataset,
batch_size=16,
num_workers=self.data_args.num_workers)
class CTAClassifier(pl.LightningModule):
def __init__(self,model_config, optimizer_cfg):
super().__init__()
self.model_config = model_config
self.enc = Encoder(self.model_config)
print('check point',optimizer_cfg.checkpoint_path)
# for non-deepseepd
# state_dict = torch.load(open(checkpoint_path, 'rb'))['state_dict']
# from collections import OrderedDict
# new_state_dict = OrderedDict()
# for k, v in state_dict.items():
# if 'model' in k:
# name = k[6:] # remove `model.`
# new_state_dict[name] = v
# self.enc.load_state_dict(new_state_dict, strict=True)
# for deepspeed
state_dict = torch.load(open(optimizer_cfg.checkpoint_path, 'rb'))
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict['module'].items():
if 'model' in k:
name = k[13:] # remove `module.model.`
new_state_dict[name] = v
self.enc.load_state_dict(new_state_dict, strict=True)
self.optimizer_cfg = optimizer_cfg
self.fc1 = nn.Linear(768, 384)
self.fc2 = nn.Linear(384, 255)
self.relu = torch.nn.ReLU()
self.dropout = nn.Dropout()
self.init_weights()
self.loss_fct = BCEWithLogitsLoss()
self.pre, self.rec, self.f1, self.avg_pre = Precision(threshold=0.5, average='micro'), Recall(threshold=0.5, average='micro'), F1Score(threshold=0.5, average='micro'), AveragePrecision()
# only need to re-write forward
def init_weights(self):
nn.init.xavier_uniform(self.fc1.weight)
self.fc1.bias.data.fill_(0.01)
nn.init.xavier_uniform(self.fc2.weight)
self.fc2.bias.data.fill_(0.01)
def training_step(self, batch, batch_idx):
outputs = self.enc(batch)
hyperedge_outputs = outputs[1]
col_embeds = torch.index_select(hyperedge_outputs, 0, torch.nonzero(batch.col_mask).squeeze())
labels = batch.y
logits = self.fc2(self.dropout(self.relu(self.fc1(col_embeds))))
loss = self.loss_fct(logits, labels)
self.log_dict({'train_loss': loss}, prog_bar=True)
return loss
def validation_step(self, batch, batch_idx):
outputs= self.enc(batch)
hyperedge_outputs = outputs[1]
col_embeds = torch.index_select(hyperedge_outputs, 0, torch.nonzero(batch.col_mask).squeeze())
labels = batch.y
logits = self.fc2(self.dropout(self.relu(self.fc1(col_embeds))))
loss = self.loss_fct(logits, labels)
self.log("validation_loss", loss, prog_bar=True)
return {"logits": logits, "labels": labels}
def validation_epoch_end(self, outputs):
logits = torch.cat([out["logits"] for out in outputs], dim=0)
labels = torch.cat([out["labels"] for out in outputs], dim=0).long()
probs = torch.sigmoid(logits)
precision, recall, f1_score, avg_precision = self.pre(probs, labels), self.rec(probs, labels), self.f1(probs, labels), self.avg_pre(probs, labels)
self.log_dict({'val_f1': f1_score, 'val_avg_accuracy': avg_precision,
'val_precision': precision, 'val_recall': recall}, prog_bar=True)
def test_step(self, batch, batch_ix):
outputs = self.enc(batch)
hyperedge_outputs = outputs[1]
col_embeds = torch.index_select(hyperedge_outputs, 0, torch.nonzero(batch.col_mask).squeeze())
labels = batch.y
logits = self.fc2(self.dropout(self.relu(self.fc1(col_embeds))))
loss = self.loss_fct(logits, labels)
self.log("test_loss", loss, prog_bar=True)
return {"logits": logits, "labels": labels}
def test_epoch_end(self, outputs):
logits = torch.cat([out["logits"] for out in outputs], dim=0)
labels = torch.cat([out["labels"] for out in outputs], dim=0).long()
probs = torch.sigmoid(logits)
precision, recall, f1_score, avg_precision = self.pre(probs, labels), self.rec(probs, labels), self.f1(probs, labels), self.avg_pre(probs, labels)
self.log_dict({'test_f1': f1_score, 'test_avg_accuracy': avg_precision,
'test_precision': precision, 'test_recall': recall}, prog_bar=True)
# ---------------------
# TRAINING SETUP
# ---------------------
def num_training_steps(self) -> int:
"""Total training steps inferred from datamodule and devices."""
dataset = self.trainer.datamodule.train_dataloader()
if self.trainer.max_steps!=-1:
return self.trainer.max_steps
dataset_size = len(dataset)*dataset.batch_size
num_devices = max(1, self.trainer.num_gpus)
effective_batch_size = dataset.batch_size * self.trainer.accumulate_grad_batches * num_devices
return (dataset_size // effective_batch_size) * self.trainer.max_epochs
def configure_optimizers(self):
learning_rate = self.optimizer_cfg.base_learning_rate
# create the optimizer
no_decay = ["bias", "LayerNorm.weight"]
params_decay = [
p for n, p in self.named_parameters() if not any(nd in n for nd in no_decay)
]
params_nodecay = [
p for n, p in self.named_parameters() if any(nd in n for nd in no_decay)
]
optim_groups = [
{
"params": params_decay,
"weight_decay": self.optimizer_cfg.weight_decay,
},
{"params": params_nodecay, "weight_decay": 0.0},
]
optimizer = self.optimizer_cfg.get_optimizer(optim_groups, learning_rate)
num_training_steps = self.num_training_steps()
print('num steps:', num_training_steps)
scheduler = get_scheduler(
self.optimizer_cfg.lr_scheduler_type,
optimizer,
num_warmup_steps=int(self.optimizer_cfg.warmup_step_ratio*num_training_steps),
num_training_steps=num_training_steps,
)
return (
[optimizer],
[
{
"scheduler": scheduler,
"interval": "step",
"frequency": 1,
"reduce_on_plateau": False,
"monitor": "validation_loss",
}
],
)
def evaluate():
# ********************************* set up logger *********************************
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
py_logger = logging.getLogger(__name__)
py_logger.setLevel(logging.INFO)
tb_logger = TensorBoardLogger("logs", name="cta_evaluate", default_hp_metric=True)
# ********************************* parse arguments *********************************
parser = HfArgumentParser((DataArguments, OptimizerConfig))
parser = pl.Trainer.add_argparse_args(parser)
(
data_args,
optimizer_cfg,
trainer_args,
) = parser.parse_args_into_dataclasses()
py_logger.info(f"data_args: {data_args}\n")
py_logger.info(f"optimizer_cfg: {optimizer_cfg}\n")
py_logger.info(f"trainer_args: {trainer_args}\n")
# ********************************* set up tokenizer and model config*********************************
# custom BERT tokenizer and model config
tokenizer = AutoTokenizer.from_pretrained(
data_args.tokenizer_config_type)
new_tokens = ['[TAB]', '[HEAD]', '[CELL]', '[ROW]', "scinotexp"]
py_logger.info(f"new tokens added: {new_tokens}\n")
tokenizer.add_tokens(new_tokens)
model_config = AutoConfig.from_pretrained(data_args.tokenizer_config_type)
model_config.update({'vocab_size': len(tokenizer), "pre_norm": False, "activation_dropout":0.1, "gated_proj": False})
py_logger.info(f"model config: {model_config}\n")
data_module = CTADataModule(tokenizer=tokenizer,
data_args = data_args,
seed=optimizer_cfg.seed,
batch_size=optimizer_cfg.batch_size,
py_logger=py_logger
)
# ********************************* set up model module *********************************
model_module = CTAClassifier(model_config, optimizer_cfg)
# ********************************* set up trainer *********************************
callbacks = [
pl.callbacks.ModelCheckpoint(
every_n_epochs=optimizer_cfg.save_every_n_epochs,
save_top_k=optimizer_cfg.save_top_k,
monitor="val_f1",
mode = "max"
),
pl.callbacks.LearningRateMonitor(logging_interval="step"),
]
trainer = pl.Trainer.from_argparse_args(
trainer_args,
callbacks=callbacks,
logger = tb_logger,
)
trainer.fit(model_module, data_module)
trainer.validate(ckpt_path="best", datamodule = data_module)
trainer.test(ckpt_path="best", datamodule = data_module)
if __name__ == '__main__':
import warnings
warnings.filterwarnings("ignore")
seed = 42
seed_everything(seed, workers=True)
evaluate()