diff --git a/docs/source/cli/graph-construction/distributed/gsprocessing/aws-infra/amazon-sagemaker.rst b/docs/source/cli/graph-construction/distributed/gsprocessing/aws-infra/amazon-sagemaker.rst index 718c202814..f5721e6725 100644 --- a/docs/source/cli/graph-construction/distributed/gsprocessing/aws-infra/amazon-sagemaker.rst +++ b/docs/source/cli/graph-construction/distributed/gsprocessing/aws-infra/amazon-sagemaker.rst @@ -127,7 +127,5 @@ in :ref:`gsp-examining-output`. Run distributed partitioning and training on Amazon SageMaker ------------------------------------------------------------- -With the data now processed you can follow the -`GraphStorm Amazon SageMaker guide -`_ +With the data now processed you can follow the :ref:`GraphStorm Amazon SageMaker guide` to partition your data and run training on AWS. diff --git a/docs/source/cli/graph-construction/distributed/gsprocessing/aws-infra/emr-serverless.rst b/docs/source/cli/graph-construction/distributed/gsprocessing/aws-infra/emr-serverless.rst index 028c8c37d5..986ce26e6f 100644 --- a/docs/source/cli/graph-construction/distributed/gsprocessing/aws-infra/emr-serverless.rst +++ b/docs/source/cli/graph-construction/distributed/gsprocessing/aws-infra/emr-serverless.rst @@ -290,6 +290,5 @@ Run distributed partitioning and training on Amazon SageMaker ------------------------------------------------------------- With the data now processed you can follow the -`GraphStorm Amazon SageMaker guide -`_ +:ref:`GraphStorm Amazon SageMaker guide` to partition your data and run training on AWS. diff --git a/docs/source/cli/graph-construction/distributed/gsprocessing/aws-infra/emr.rst b/docs/source/cli/graph-construction/distributed/gsprocessing/aws-infra/emr.rst index 9deb72010a..22cd1cb459 100644 --- a/docs/source/cli/graph-construction/distributed/gsprocessing/aws-infra/emr.rst +++ b/docs/source/cli/graph-construction/distributed/gsprocessing/aws-infra/emr.rst @@ -201,6 +201,5 @@ Run distributed partitioning and training on Amazon SageMaker ------------------------------------------------------------- With the data now processed you can follow the -`GraphStorm Amazon SageMaker guide -`_ +:ref:`GraphStorm Amazon SageMaker guide` to partition your data and run training on AWS. diff --git a/docs/source/cli/graph-construction/distributed/gsprocessing/distributed-processing-setup.rst b/docs/source/cli/graph-construction/distributed/gsprocessing/distributed-processing-setup.rst index e36efc7d12..d49cccbe6b 100644 --- a/docs/source/cli/graph-construction/distributed/gsprocessing/distributed-processing-setup.rst +++ b/docs/source/cli/graph-construction/distributed/gsprocessing/distributed-processing-setup.rst @@ -28,12 +28,12 @@ You can clone the GraphStorm repository using git clone https://github.com/awslabs/graphstorm.git -You can then navigate to the ``graphstorm-processing/docker`` directory +You can then navigate to the ``graphstorm-processing/`` directory that contains the relevant code: .. code-block:: bash - cd ./graphstorm/graphstorm-processing/docker + cd ./graphstorm/graphstorm-processing/ Install Docker --------------