Skip to content

Latest commit

 

History

History
221 lines (153 loc) · 18.1 KB

README.md

File metadata and controls

221 lines (153 loc) · 18.1 KB

Important

This repository is currently developed for Japanese users. If you wish for multilingual support, please react to this issue.

Generative AI Use Cases JP (略称:GenU)

Generative AI(生成 AI)は、ビジネスの変革に革新的な可能性をもたらします。GenU は、生成 AI を安全に業務活用するための、ビジネスユースケース集を備えたアプリケーション実装です。

sc_lp.png

このリポジトリではブラウザ拡張機能も提供しており、より便利に 生成 AI を活用することができます。詳しくはこちらのページをご覧ください。

生成AIの進化に伴い、破壊的な変更を加えることが多々あります。エラーが発生した際は、まず最初にmainブランチの更新がないかご確認ください。

ユースケース一覧

ユースケースは随時追加予定です。ご要望があれば Issue に起票をお願いいたします。

チャット

大規模言語モデル (LLM) とチャット形式で対話することができます。LLM と直接対話するプラットフォームが存在するおかげで、細かいユースケースや新しいユースケースに迅速に対応することができます。また、プロンプトエンジニアリングの検証用環境としても有効です。

RAG チャット

RAG は LLM が苦手な最新の情報やドメイン知識を外部から伝えることで、本来なら回答できない内容にも答えられるようにする手法です。それと同時に、根拠に基づいた回答のみを許すため、LLM にありがちな「それっぽい間違った情報」を回答させないという効果もあります。例えば、社内ドキュメントを LLM に渡せば、社内の問い合わせ対応が自動化できます。このリポジトリでは Amazon Kendra か Knowledge Base から情報を取得します。

Agent チャット

Agent は LLM を API と連携することでさまざまなタスクを行えるようにする手法です。このソリューションではサンプル実装として検索エンジンを利用し必要な情報を調査して回答する Agent を実装しています。

Prompt Flow チャット

Amazon Bedrock Prompt Flowsにより、プロンプト、基盤モデル、および他のAWSサービスを接続することでワークフローを作成できます。Prompt Flow チャットユースケースでは、作成済みの Flow を選択して実行するチャットが利用できます。

文章生成

あらゆるコンテキストで文章を生成することは LLM が最も得意とするタスクの 1 つです。記事・レポート・メールなど、あらゆるコンテキストに対応します。

要約

LLM は、大量の文章を要約するタスクを得意としています。ただ要約するだけでなく、文章をコンテキストとして与えた上で、必要な情報を対話形式で引き出すこともできます。例えば、契約書を読み込ませて「XXX の条件は?」「YYY の金額は?」といった情報を取得することが可能です。

校正

LLM は、誤字脱字のチェックだけでなく、文章の流れや内容を考慮したより客観的な視点から改善点を提案できます。人に見せる前に LLM に自分では気づかなかった点を客観的にチェックしてもらいクオリティを上げる効果が期待できます。

翻訳

多言語で学習した LLM は、翻訳を行うことも可能です。また、ただ翻訳するだけではなく、カジュアルさ・対象層など様々な指定されたコンテキスト情報を翻訳に反映させることが可能です。

Web コンテンツ抽出

ブログやドキュメントなどの Web コンテンツを抽出します。LLM によって不要な情報はそぎ落とし、成立した文章として整形します。抽出したコンテンツは要約、翻訳などの別のユースケースで利用できます。

画像生成

画像生成 AI は、テキストや画像を元に新しい画像を生成できます。アイデアを即座に可視化することができ、デザイン作業などの効率化を期待できます。こちらの機能では、プロンプトの作成を LLM に支援してもらうことができます。

映像分析

マルチモーダルモデルによってテキストのみではなく、画像を入力することが可能になりました。こちらの機能では、映像の画像フレームとテキストを入力として LLM に分析を依頼します。

アーキテクチャ

この実装では、フロントエンドに React を採用し、静的ファイルは Amazon CloudFront + Amazon S3 によって配信されています。バックエンドには Amazon API Gateway + AWS Lambda、認証には Amazon Cognito を使用しています。また、LLM は Amazon Bedrock を使用します。RAG のデータソースには Amazon Kendra を利用しています。

arch.drawio.png

デプロイ

Important

このリポジトリでは、デフォルトのモデルとしてバージニア北部リージョン (us-east-1) の Anthropic Claude 3 Sonnet (テキスト生成)と、Stability AI の SDXL 1.0(画像生成) を利用する設定になっています。Model access 画面 (us-east-1)を開き、Anthropic Claude 3 Sonnet にチェックして Save changes してください。その他のモデル (Anthropic Claude 3 Haiku, Meta Llama3, Cohere Command-R など) を利用するために設定を変更する方法については Amazon Bedrock のモデルを変更する を参照してください。

GenU のデプロイには AWS Cloud Development Kit(以降 CDK)を利用します。Step-by-Step の解説、あるいは、別のデプロイ手段を利用する場合は以下を参照してください。

まず、以下のコマンドを実行してください。全てのコマンドはリポジトリのルートで実行してください。

npm ci

CDK を利用したことがない場合、初回のみ Bootstrap 作業が必要です。すでに Bootstrap された環境では以下のコマンドは不要です。

npx -w packages/cdk cdk bootstrap

続いて、以下のコマンドで AWS リソースをデプロイします。デプロイが完了するまで、お待ちください(20 分程度かかる場合があります)。

npm run cdk:deploy

その他

料金試算

GenU をご利用いただく際の、構成と料金試算例を公開しております。
この料金試算例は、Amazon Kendra を活用した RAG チャット機能を有効化する前提となっています。 セキュリティ強化のための AWS WAF や、ファイルのアップロード機能、Knowledge Base を活用したオプション機能などは含まれていない点にご注意ください。 従量課金制となっており、実際の料金はご利用内容により変動いたします。

お客様事例

Customer Quote
株式会社やさしい手
GenU のおかげで、利用者への付加価値提供と従業員の業務効率向上が実現できました。従業員にとって「いままでの仕事」が楽しい仕事に変化していく「サクサクからワクワクへ」更に進化を続けます!
事例の詳細を見る
株式会社サルソニード
ソリューションとして用意されている GenU を活用することで、生成 AI による業務プロセスの改善に素早く取り掛かることができました。
事例の詳細を見る
適用サービス
株式会社タムラ製作所
AWS が Github に公開しているアプリケーションサンプルは即テスト可能な機能が豊富で、そのまま利用することで自分たちにあった機能の選定が難なくでき、最終システムの開発時間を短縮することができました。
事例の詳細を見る
株式会社JDSC
Amazon Bedrock ではセキュアにデータを用い LLM が活用できます。また、用途により最適なモデルを切り替えて利用できるので、コストを抑えながら速度・精度を高めることができました。
事例の詳細を見る
アイレット株式会社
株式会社バンダイナムコアミューズメントの生成 AI 活用に向けて社内のナレッジを蓄積・体系化すべく、AWS が提供している Generative AI Use Cases JP を活用したユースケースサイトを開発。アイレット株式会社が本プロジェクトの設計・構築・開発を支援。
株式会社バンダイナムコアミューズメント様のクラウドを活用した導入事例
株式会社アイデアログ
M従来の生成 AI ツールよりもさらに業務効率化ができていると感じます。入出力データをモデルの学習に使わない Amazon Bedrock を使っているので、セキュリティ面も安心です。
事例の詳細を見る
適用サービス
株式会社エスタイル
GenU を活用して短期間で生成 AI 環境を構築し、社内のナレッジシェアを促進することができました。
事例の詳細を見る

活用事例を掲載させて頂ける場合は、Issueよりご連絡ください。

参照

Security

See CONTRIBUTING for more information.

License

This library is licensed under the MIT-0 License. See the LICENSE file.