forked from Maluuba/nlg-eval
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_nlgeval.py
121 lines (110 loc) · 6.69 KB
/
test_nlgeval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
import os
import unittest
import nlgeval
from nlgeval import NLGEval
class TestNlgEval(unittest.TestCase):
def test_compute_metrics_oo(self):
# Create the object in the test so that it can be garbage collected once the test is done.
n = NLGEval()
# Individual Metrics
scores = n.compute_individual_metrics(ref=["this is a test",
"this is also a test"],
hyp="this is a good test")
self.assertAlmostEqual(0.799999, scores['Bleu_1'], places=5)
self.assertAlmostEqual(0.632455, scores['Bleu_2'], places=5)
self.assertAlmostEqual(0.5108729, scores['Bleu_3'], places=5)
self.assertAlmostEqual(0.0000903602, scores['Bleu_4'], places=5)
self.assertAlmostEqual(0.44434387, scores['METEOR'], places=5)
self.assertAlmostEqual(0.9070631, scores['ROUGE_L'], places=5)
self.assertAlmostEqual(0.0, scores['CIDEr'], places=5)
self.assertAlmostEqual(0.8375251, scores['SkipThoughtCS'], places=5)
self.assertAlmostEqual(0.980075, scores['EmbeddingAverageCosineSimilairty'], places=5)
self.assertAlmostEqual(0.94509, scores['VectorExtremaCosineSimilarity'], places=5)
self.assertAlmostEqual(0.960771, scores['GreedyMatchingScore'], places=5)
self.assertEqual(11, len(scores))
scores = n.compute_metrics(ref_list=[
[
"this is one reference sentence for sentence1",
"this is a reference sentence for sentence2 which was generated by your model"
],
[
"this is one more reference sentence for sentence1",
"this is the second reference sentence for sentence2"
],
],
hyp_list=[
"this is the model generated sentence1 which seems good enough",
"this is sentence2 which has been generated by your model"
]
)
self.assertAlmostEqual(0.55, scores['Bleu_1'], places=5)
self.assertAlmostEqual(0.428174, scores['Bleu_2'], places=5)
self.assertAlmostEqual(0.284043, scores['Bleu_3'], places=5)
self.assertAlmostEqual(0.201143, scores['Bleu_4'], places=5)
self.assertAlmostEqual(0.295797, scores['METEOR'], places=5)
self.assertAlmostEqual(0.522104, scores['ROUGE_L'], places=5)
self.assertAlmostEqual(1.242192, scores['CIDEr'], places=5)
self.assertAlmostEqual(0.626149, scores['SkipThoughtCS'], places=5)
self.assertAlmostEqual(0.88469, scores['EmbeddingAverageCosineSimilairty'], places=5)
self.assertAlmostEqual(0.568696, scores['VectorExtremaCosineSimilarity'], places=5)
self.assertAlmostEqual(0.784205, scores['GreedyMatchingScore'], places=5)
self.assertEqual(11, len(scores))
# Non-ASCII tests.
scores = n.compute_individual_metrics(ref=["Test en français.",
"Le test en français."],
hyp="Le test est en français.")
self.assertAlmostEqual(0.799999, scores['Bleu_1'], places=5)
self.assertAlmostEqual(0.632455, scores['Bleu_2'], places=5)
self.assertAlmostEqual(0.0000051, scores['Bleu_3'], places=5)
self.assertAlmostEqual(0, scores['Bleu_4'], places=5)
self.assertAlmostEqual(0.48372379050300296, scores['METEOR'], places=5)
self.assertAlmostEqual(0.9070631, scores['ROUGE_L'], places=5)
self.assertAlmostEqual(0.0, scores['CIDEr'], places=5)
self.assertAlmostEqual(0.9192341566085815, scores['SkipThoughtCS'], places=5)
self.assertAlmostEqual(0.906562, scores['EmbeddingAverageCosineSimilairty'], places=5)
self.assertAlmostEqual(0.815158, scores['VectorExtremaCosineSimilarity'], places=5)
self.assertAlmostEqual(0.940959, scores['GreedyMatchingScore'], places=5)
self.assertEqual(11, len(scores))
scores = n.compute_individual_metrics(ref=["テスト"],
hyp="テスト")
self.assertAlmostEqual(0.99999999, scores['Bleu_1'], places=5)
self.assertAlmostEqual(1.0, scores['METEOR'], places=3)
self.assertAlmostEqual(1.0, scores['ROUGE_L'], places=3)
self.assertAlmostEqual(0.0, scores['CIDEr'], places=3)
self.assertAlmostEqual(1.0, scores['SkipThoughtCS'], places=3)
self.assertAlmostEqual(1.0, scores['GreedyMatchingScore'], places=3)
self.assertEqual(11, len(scores))
def test_compute_metrics_omit(self):
n = NLGEval(metrics_to_omit=['Bleu_3', 'METEOR', 'EmbeddingAverageCosineSimilairty'])
# Individual Metrics
scores = n.compute_individual_metrics(ref=["this is a test",
"this is also a test"],
hyp="this is a good test")
self.assertAlmostEqual(0.799999, scores['Bleu_1'], places=5)
self.assertAlmostEqual(0.632455, scores['Bleu_2'], places=5)
self.assertAlmostEqual(0.9070631, scores['ROUGE_L'], places=5)
self.assertAlmostEqual(0.0, scores['CIDEr'], places=5)
self.assertAlmostEqual(0.8375251, scores['SkipThoughtCS'], places=5)
self.assertAlmostEqual(0.94509, scores['VectorExtremaCosineSimilarity'], places=5)
self.assertAlmostEqual(0.960771, scores['GreedyMatchingScore'], places=5)
self.assertEqual(7, len(scores))
def test_compute_metrics(self):
# The example from the README.
root_dir = os.path.join(os.path.dirname(__file__), '..', '..')
hypothesis = os.path.join(root_dir, 'examples/hyp.txt')
references = os.path.join(root_dir, 'examples/ref1.txt'), os.path.join(root_dir, 'examples/ref2.txt')
scores = nlgeval.compute_metrics(hypothesis, references)
self.assertAlmostEqual(0.55, scores['Bleu_1'], places=5)
self.assertAlmostEqual(0.428174, scores['Bleu_2'], places=5)
self.assertAlmostEqual(0.284043, scores['Bleu_3'], places=5)
self.assertAlmostEqual(0.201143, scores['Bleu_4'], places=5)
self.assertAlmostEqual(0.295797, scores['METEOR'], places=5)
self.assertAlmostEqual(0.522104, scores['ROUGE_L'], places=5)
self.assertAlmostEqual(1.242192, scores['CIDEr'], places=5)
self.assertAlmostEqual(0.626149, scores['SkipThoughtCS'], places=5)
self.assertAlmostEqual(0.88469, scores['EmbeddingAverageCosineSimilairty'], places=5)
self.assertAlmostEqual(0.568696, scores['VectorExtremaCosineSimilarity'], places=5)
self.assertAlmostEqual(0.784205, scores['GreedyMatchingScore'], places=5)
self.assertEqual(11, len(scores))