forked from thegreathoe/cbpi-pt100-sensor
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmax31865.py
225 lines (194 loc) · 7.3 KB
/
max31865.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#!/usr/bin/python
#The MIT License (MIT)
#
#Copyright (c) 2015 Stephen P. Smith
#
#Permission is hereby granted, free of charge, to any person obtaining a copy
#of this software and associated documentation files (the "Software"), to deal
#in the Software without restriction, including without limitation the rights
#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#copies of the Software, and to permit persons to whom the Software is
#furnished to do so, subject to the following conditions:
#
#The above copyright notice and this permission notice shall be included in all
#copies or substantial portions of the Software.
#
#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
#SOFTWARE.
import time, math
import RPi.GPIO as GPIO
#import numpy
class max31865(object):
"""Reading Temperature from the MAX31865 with GPIO using
the Raspberry Pi. Any pins can be used.
Numpy can be used to completely solve the Callendar-Van Dusen equation
but it slows the temp reading down. I commented it out in the code.
Both the quadratic formula using Callendar-Van Dusen equation (ignoring the
3rd and 4th degree parts of the polynomial) and the straight line approx.
temperature is calculated with the quadratic formula one being the most accurate.
"""
def __init__(self, csPin, misoPin, mosiPin, clkPin, ResSens, RefRest, ConfigReg):
self.csPin = csPin
self.misoPin = misoPin
self.mosiPin = mosiPin
self.clkPin = clkPin
self.RefRest = RefRest
self.ConfigReg = ConfigReg
self.ResSens = ResSens
self.setupGPIO()
def setupGPIO(self):
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)
GPIO.setup(self.csPin, GPIO.OUT)
GPIO.setup(self.misoPin, GPIO.IN)
GPIO.setup(self.mosiPin, GPIO.OUT)
GPIO.setup(self.clkPin, GPIO.OUT)
GPIO.output(self.csPin, GPIO.HIGH)
GPIO.output(self.clkPin, GPIO.LOW)
GPIO.output(self.mosiPin, GPIO.LOW)
def readTemp(self):
#
# b10000000 = 0x80
# 0x8x to specify 'write register value'
# 0xx0 to specify 'configuration register'
#
#
# Config Register
# ---------------
# bit 7: Vbias -> 1 (ON), 0 (OFF)
# bit 6: Conversion Mode -> 0 (MANUAL), 1 (AUTO) !!don't change the noch fequency when auto
# bit5: 1-shot ->1 (ON)
# bit4: 3-wire select -> 1 (3 wires config), 0 (2 or 4 wires)
# bits 3-2: fault detection cycle -> 0 (none)
# bit 1: fault status clear -> 1 (clear any fault)
# bit 0: 50/60 Hz filter select -> 0 (60Hz - Faster converson), 1 (50Hz)
#
# 0b10110010 = 0xB2 (Manual conversion, 3 wires at 60Hz)
# 0b10100010 = 0xA2 (Manual conversion, 2 or 4 wires at 60Hz)
# 0b11010010 = 0xD2 (Continuous auto conversion, 3 wires at 60 Hz)
# 0b11000010 = 0xC2 (Continuous auto conversion, 2 or 4 wires at 60 Hz)
#
#one shot
self.writeRegister(0, self.ConfigReg)
# conversion time is less than 100ms
time.sleep(.1) #give it 100ms for conversion
# read all registers
out = self.readRegisters(0,8)
conf_reg = out[0]
#print "config register byte: %x" % conf_reg
[rtd_msb, rtd_lsb] = [out[1], out[2]]
rtd_ADC_Code = (( rtd_msb << 8 ) | rtd_lsb ) >> 1
temp_C = self.calcPT100Temp(rtd_ADC_Code)
[hft_msb, hft_lsb] = [out[3], out[4]]
hft = (( hft_msb << 8 ) | hft_lsb ) >> 1
#print "high fault threshold: %d" % hft
[lft_msb, lft_lsb] = [out[5], out[6]]
lft = (( lft_msb << 8 ) | lft_lsb ) >> 1
#print "low fault threshold: %d" % lft
status = out[7]
#
# 10 Mohm resistor is on breakout board to help
# detect cable faults
# bit 7: RTD High Threshold / cable fault open
# bit 6: RTD Low Threshold / cable fault short
# bit 5: REFIN- > 0.85 x VBias -> must be requested
# bit 4: REFIN- < 0.85 x VBias (FORCE- open) -> must be requested
# bit 3: RTDIN- < 0.85 x VBias (FORCE- open) -> must be requested
# bit 2: Overvoltage / undervoltage fault
# bits 1,0 don't care
#print "Status byte: %x" % status
if ((status & 0x80) == 1):
raise FaultError("High threshold limit (Cable fault/open)")
if ((status & 0x40) == 1):
raise FaultError("Low threshold limit (Cable fault/short)")
if ((status & 0x04) == 1):
raise FaultError("Overvoltage or Undervoltage Error")
return temp_C
def writeRegister(self, regNum, dataByte):
GPIO.output(self.csPin, GPIO.LOW)
# 0x8x to specify 'write register value'
addressByte = 0x80 | regNum;
# first byte is address byte
self.sendByte(addressByte)
# the rest are data bytes
self.sendByte(dataByte)
GPIO.output(self.csPin, GPIO.HIGH)
def readRegisters(self, regNumStart, numRegisters):
out = []
GPIO.output(self.csPin, GPIO.LOW)
# 0x to specify 'read register value'
self.sendByte(regNumStart)
for byte in range(numRegisters):
data = self.recvByte()
out.append(data)
GPIO.output(self.csPin, GPIO.HIGH)
return out
def sendByte(self,byte):
for bit in range(8):
GPIO.output(self.clkPin, GPIO.HIGH)
if (byte & 0x80):
GPIO.output(self.mosiPin, GPIO.HIGH)
else:
GPIO.output(self.mosiPin, GPIO.LOW)
byte <<= 1
GPIO.output(self.clkPin, GPIO.LOW)
def recvByte(self):
byte = 0x00
for bit in range(8):
GPIO.output(self.clkPin, GPIO.HIGH)
byte <<= 1
if GPIO.input(self.misoPin):
byte |= 0x1
GPIO.output(self.clkPin, GPIO.LOW)
return byte
def calcPT100Temp(self, RTD_ADC_Code):
R_REF = self.RefRest # Reference Resistor was 400.0
Res0 = self.ResSens # Resistance at 0 degC for 400ohm R_Ref
a = .00390830
b = -.000000577500
# c = -4.18301e-12 # for -200 <= T <= 0 (degC)
#c = -0.00000000000418301
# c = 0 # for 0 <= T <= 850 (degC)
#print "RTD ADC Code: %d" % RTD_ADC_Code
Res_RTD = (RTD_ADC_Code * R_REF) / 32768.0 # PT100 Resistance
#print "PT100 Resistance: %f ohms" % Res_RTD
#
# Callendar-Van Dusen equation
# Res_RTD = Res0 * (1 + a*T + b*T**2 + c*(T-100)*T**3)
# Res_RTD = Res0 + a*Res0*T + b*Res0*T**2 # c = 0
# (c*Res0)T**4 - (c*Res0)*100*T**3
# + (b*Res0)*T**2 + (a*Res0)*T + (Res0 - Res_RTD) = 0
#
# quadratic formula:
# for 0 <= T <= 850 (degC)
temp_C = -(a*Res0) + math.sqrt(a*a*Res0*Res0 - 4*(b*Res0)*(Res0 - Res_RTD))
temp_C = temp_C / (2*(b*Res0))
temp_C_line = (RTD_ADC_Code/32.0) - 256.0
# removing numpy.roots will greatly speed things up
#temp_C_numpy = numpy.roots([c*Res0, -c*Res0*100, b*Res0, a*Res0, (Res0 - Res_RTD)])
#temp_C_numpy = abs(temp_C_numpy[-1])
#print "Straight Line Approx. Temp: %f degC" % temp_C_line
#print "Callendar-Van Dusen Temp (degC > 0): %f degC" % temp_C
#print "Solving Full Callendar-Van Dusen using numpy: %f" % temp_C_numpy
if (temp_C < 0): #use straight line approximation if less than 0
# Can also use python lib numpy to solve cubic
# Should never get here in this application
temp_C = (RTD_ADC_Code/32) - 256
#print temp_C
return temp_C
class FaultError(Exception):
pass
if __name__ == "__main__":
import max31865
csPin = 8
misoPin = 9
mosiPin = 10
clkPin = 11
max = max31865.max31865(csPin,misoPin,mosiPin,clkPin)
tempC = max.readTemp()
GPIO.cleanup()