-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
196 lines (172 loc) · 6.67 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import numpy as np
import cv2
import torch
import torch.nn as nn
import torchvision as tv
import network
# ----------------------------------------
# Network
# ----------------------------------------
def create_generator(opt):
# Initialize the networks
generator = network.GatedGenerator(opt)
print('Generator is created!')
network.weights_init(generator, init_type = opt.init_type, init_gain = opt.init_gain)
print('Initialize generator with %s type' % opt.init_type)
return generator
def create_discriminator(opt):
# Initialize the networks
discriminator = network.PatchDiscriminator(opt)
print('Discriminator is created!')
network.weights_init(discriminator, init_type = opt.init_type, init_gain = opt.init_gain)
print('Initialize discriminator with %s type' % opt.init_type)
return discriminator
def create_perceptualnet():
# Get the first 15 layers of vgg16, which is conv3_3
perceptualnet = network.PerceptualNet()
print('Perceptual network is created!')
return perceptualnet
# ----------------------------------------
# PATH processing
# ----------------------------------------
def text_readlines(filename):
# Try to read a txt file and return a list.Return [] if there was a mistake.
try:
file = open(filename, 'r')
except IOError:
error = []
return error
content = file.readlines()
# This for loop deletes the EOF (like \n)
for i in range(len(content)):
content[i] = content[i][:len(content[i])-1]
file.close()
return content
def savetxt(name, loss_log):
np_loss_log = np.array(loss_log)
np.savetxt(name, np_loss_log)
def get_files(path):
# read a folder, return the complete path
ret = []
for root, dirs, files in os.walk(path):
for filespath in files:
ret.append(os.path.join(root, filespath))
return ret
def get_names(path):
# read a folder, return the image name
ret = []
for root, dirs, files in os.walk(path):
for filespath in files:
ret.append(filespath)
return ret
def text_save(content, filename, mode = 'a'):
# save a list to a txt
# Try to save a list variable in txt file.
file = open(filename, mode)
for i in range(len(content)):
file.write(str(content[i]) + '\n')
file.close()
def check_path(path):
if not os.path.exists(path):
os.makedirs(path)
# ----------------------------------------
# Validation and Sample at training
# ----------------------------------------
def save_sample_png(sample_folder, sample_name, img_list, name_list, pixel_max_cnt = 255):
# Save image one-by-one
for i in range(len(img_list)):
img = img_list[i]
# Recover normalization: * 255 because last layer is sigmoid activated
img = img * 255
# Process img_copy and do not destroy the data of img
img_copy = img.clone().data.permute(0, 2, 3, 1)[0, :, :, :].cpu().numpy()
img_copy = np.clip(img_copy, 0, pixel_max_cnt)
img_copy = img_copy.astype(np.uint8)
img_copy = cv2.cvtColor(img_copy, cv2.COLOR_RGB2BGR)
# Save to certain path
save_img_name = sample_name + '_' + name_list[i] + '.jpg'
save_img_path = os.path.join(sample_folder, save_img_name)
cv2.imwrite(save_img_path, img_copy)
def psnr(pred, target, pixel_max_cnt = 255):
mse = torch.mul(target - pred, target - pred)
rmse_avg = (torch.mean(mse).item()) ** 0.5
p = 20 * np.log10(pixel_max_cnt / rmse_avg)
return p
def grey_psnr(pred, target, pixel_max_cnt = 255):
pred = torch.sum(pred, dim = 0)
target = torch.sum(target, dim = 0)
mse = torch.mul(target - pred, target - pred)
rmse_avg = (torch.mean(mse).item()) ** 0.5
p = 20 * np.log10(pixel_max_cnt * 3 / rmse_avg)
return p
def ssim(pred, target):
pred = pred.clone().data.permute(0, 2, 3, 1).cpu().numpy()
target = target.clone().data.permute(0, 2, 3, 1).cpu().numpy()
target = target[0]
pred = pred[0]
ssim = skimage.measure.compare_ssim(target, pred, multichannel = True)
return ssim
## for contextual attention
def extract_image_patches(images, ksizes, strides, rates, padding='same'):
"""
Extract patches from images and put them in the C output dimension.
:param padding:
:param images: [batch, channels, in_rows, in_cols]. A 4-D Tensor with shape
:param ksizes: [ksize_rows, ksize_cols]. The size of the sliding window for
each dimension of images
:param strides: [stride_rows, stride_cols]
:param rates: [dilation_rows, dilation_cols]
:return: A Tensor
"""
assert len(images.size()) == 4
assert padding in ['same', 'valid']
batch_size, channel, height, width = images.size()
if padding == 'same':
images = same_padding(images, ksizes, strides, rates)
elif padding == 'valid':
pass
else:
raise NotImplementedError('Unsupported padding type: {}.\
Only "same" or "valid" are supported.'.format(padding))
unfold = torch.nn.Unfold(kernel_size=ksizes,
dilation=rates,
padding=0,
stride=strides)
patches = unfold(images)
return patches # [N, C*k*k, L], L is the total number of such blocks
def same_padding(images, ksizes, strides, rates):
assert len(images.size()) == 4
batch_size, channel, rows, cols = images.size()
out_rows = (rows + strides[0] - 1) // strides[0]
out_cols = (cols + strides[1] - 1) // strides[1]
effective_k_row = (ksizes[0] - 1) * rates[0] + 1
effective_k_col = (ksizes[1] - 1) * rates[1] + 1
padding_rows = max(0, (out_rows-1)*strides[0]+effective_k_row-rows)
padding_cols = max(0, (out_cols-1)*strides[1]+effective_k_col-cols)
# Pad the input
padding_top = int(padding_rows / 2.)
padding_left = int(padding_cols / 2.)
padding_bottom = padding_rows - padding_top
padding_right = padding_cols - padding_left
paddings = (padding_left, padding_right, padding_top, padding_bottom)
images = torch.nn.ZeroPad2d(paddings)(images)
return images
def reduce_mean(x, axis=None, keepdim=False):
if not axis:
axis = range(len(x.shape))
for i in sorted(axis, reverse=True):
x = torch.mean(x, dim=i, keepdim=keepdim)
return x
def reduce_std(x, axis=None, keepdim=False):
if not axis:
axis = range(len(x.shape))
for i in sorted(axis, reverse=True):
x = torch.std(x, dim=i, keepdim=keepdim)
return x
def reduce_sum(x, axis=None, keepdim=False):
if not axis:
axis = range(len(x.shape))
for i in sorted(axis, reverse=True):
x = torch.sum(x, dim=i, keepdim=keepdim)
return x