-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
71 lines (64 loc) · 4.86 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import argparse
import os
if __name__ == "__main__":
# ----------------------------------------
# Initialize the parameters
# ----------------------------------------
parser = argparse.ArgumentParser()
# General parameters
parser.add_argument('--save_path', type = str, default = './models', help = 'saving path that is a folder')
parser.add_argument('--sample_path', type = str, default = './samples', help = 'training samples path that is a folder')
parser.add_argument('--gan_type', type = str, default = 'WGAN', help = 'the type of GAN for training')
parser.add_argument('--multi_gpu', type = bool, default = False, help = 'nn.Parallel needs or not')
parser.add_argument('--gpu_ids', type = str, default = "0,1", help = 'gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
parser.add_argument('--cudnn_benchmark', type = bool, default = True, help = 'True for unchanged input data type')
parser.add_argument('--checkpoint_interval', type = int, default = 1, help = 'interval between model checkpoints')
parser.add_argument('--load_name', type = str, default = '', help = 'load model name')
# Training parameters
parser.add_argument('--epochs', type = int, default = 40, help = 'number of epochs of training')
parser.add_argument('--resume', action='store_true')
parser.add_argument('--resume_epoch', type = int, default = 0)
parser.add_argument('--batch_size', type = int, default = 1, help = 'size of the batches')
parser.add_argument('--lr_g', type = float, default = 2e-4, help = 'Adam: learning rate')
parser.add_argument('--lr_d', type = float, default = 2e-4, help = 'Adam: learning rate')
parser.add_argument('--b1', type = float, default = 0.5, help = 'Adam: beta 1')
parser.add_argument('--b2', type = float, default = 0.999, help = 'Adam: beta 2')
parser.add_argument('--weight_decay', type = float, default = 0, help = 'Adam: weight decay')
parser.add_argument('--lr_decrease_epoch', type = int, default = 10, help = 'lr decrease at certain epoch and its multiple')
parser.add_argument('--lr_decrease_factor', type = float, default = 0.5, help = 'lr decrease factor, for classification default 0.1')
parser.add_argument('--lambda_l1', type = float, default = 100, help = 'the parameter of L1Loss')
parser.add_argument('--lambda_perceptual', type = float, default = 10, help = 'the parameter of FML1Loss (perceptual loss)')
parser.add_argument('--lambda_gan', type = float, default = 1, help = 'the parameter of valid loss of AdaReconL1Loss; 0 is recommended')
parser.add_argument('--num_workers', type = int, default = 8, help = 'number of cpu threads to use during batch generation')
# Network parameters
parser.add_argument('--in_channels', type = int, default = 4, help = 'input RGB image + 1 channel mask')
parser.add_argument('--out_channels', type = int, default = 3, help = 'output RGB image')
parser.add_argument('--latent_channels', type = int, default = 48, help = 'latent channels')
parser.add_argument('--pad_type', type = str, default = 'zero', help = 'the padding type')
parser.add_argument('--activation', type = str, default = 'lrelu', help = 'the activation type')
parser.add_argument('--norm', type = str, default = 'in', help = 'normalization type')
parser.add_argument('--init_type', type = str, default = 'xavier', help = 'the initialization type')
parser.add_argument('--init_gain', type = float, default = 0.02, help = 'the initialization gain')
# Dataset parameters
parser.add_argument('--baseroot', type = str, default = "C:\\Users\\yzzha\\Desktop\\dataset\\ILSVRC2012_val_256", help = 'the training folder')
parser.add_argument('--mask_type', type = str, default = 'free_form', help = 'mask type')
parser.add_argument('--imgsize', type = int, default = 256, help = 'size of image')
parser.add_argument('--margin', type = int, default = 10, help = 'margin of image')
parser.add_argument('--mask_num', type = int, default = 15, help = 'number of mask')
parser.add_argument('--bbox_shape', type = int, default = 30, help = 'margin of image for bbox mask')
parser.add_argument('--max_angle', type = int, default = 4, help = 'parameter of angle for free form mask')
parser.add_argument('--max_len', type = int, default = 40, help = 'parameter of length for free form mask')
parser.add_argument('--max_width', type = int, default = 10, help = 'parameter of width for free form mask')
opt = parser.parse_args()
print(opt)
# ----------------------------------------
# Choose CUDA visible devices
# ----------------------------------------
if opt.multi_gpu == True:
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_ids
else:
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# Enter main function
import trainer
if opt.gan_type == 'WGAN':
trainer.WGAN_trainer(opt)