-
Notifications
You must be signed in to change notification settings - Fork 0
/
EWS_WarningTime_Monotonic.m
440 lines (291 loc) · 14 KB
/
EWS_WarningTime_Monotonic.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
%% INITIAL SETUP
clear; clc; close all;
PS = PLOT_STANDARDS();
addpath('Data_Import_Functions', 'Other_Useful_Functions');
tic_beginning = tic;
%% SET VALUES
% DataFolder_path = 'G:/My Drive/EWS-MultipleWindow-Method/Data';
DataFolder_path = '../Data';
System_name = 'PowerSystem';
time_transient = 20;
overlap_ratio = 99/100;
smallest_step_size = 10000;
% Set significance values
significance_value_tau = 0.05;
gpu_shift_critical_size = 520;
H_val_to_match = -1;
% Define function to call to print parfor progress bar
progress_bar_data_queue = parallel.pool.DataQueue;
afterEach(progress_bar_data_queue, @Progress_Bar_func);
%% IMPORT DATA AND PREPROCESS
% Import data into 'Data' struct
Data = Import_Data(DataFolder_path, System_name);
time = Data.time;
parameter_variation = Data.parameter_variation;
state_timeseries = Data.state_timeseries;
parameter_bifurcation = Data.parameter_bifurcation;
bifurcation_time = Data.bifurcation_time;
rate_of_parameter_variation = Data.rate_of_parameter_variation;
time_transient;
sampling_frequency = Data.sampling_frequency;
delta_t = Data.delta_t;
% Remove Data struct to save space
clearvars Data
% Remove initial transients and plot new time series
selection_transient = time > time_transient;
time = time(selection_transient);
parameter_variation = parameter_variation(selection_transient);
state_timeseries = state_timeseries(selection_transient);
% Plot transient removed state timeseries
figure('Name', 'Timeseries_TransientRemoved');
tiledlayout(1, 2, 'TileSpacing', 'compact', 'Padding', 'compact');
nexttile;
plot(time, state_timeseries);
xlabel('Time');
ylabel('State Variable Time Series');
nexttile;
plot(time, parameter_variation);
xlabel('Time');
ylabel('Parameter Time Variation');
fprintf('LIST OF USEFUL DATA\n');
fprintf('--------------------\n');
fprintf('time = refer figure\n');
fprintf('parameter_variation = refer figure\n');
fprintf('state_timeseries = refer figure\n');
fprintf('parameter_bifurcation = %f\n', parameter_bifurcation);
fprintf('bifurcation_time = %f s\n', bifurcation_time);
fprintf('time_transient = %f s\n', time_transient);
fprintf('sampling_frequency = %f Hz\n', sampling_frequency);
fprintf('delta_t = %f s\n', delta_t);
fprintf('\n\n');
%% SET WINDOW DETAILS
overlap_ratio;
max_overlap_ratio = 99 / 100;
min_overlap_ratio = 80 / 100;
largest_window_size = floor(bifurcation_time / delta_t);
largest_step_size = floor(largest_window_size * (1 - overlap_ratio));
smallest_step_size;
smallest_window_size = ceil(smallest_step_size / (1 - max_overlap_ratio));
window_size_increment = smallest_window_size / 10;
window_size_list = smallest_window_size: window_size_increment: largest_window_size;
step_size_list = floor(window_size_list * (1 - overlap_ratio));
total_window_count = length(window_size_list);
fprintf('SET WINDOW DETAILS\n');
fprintf('--------------------\n');
fprintf('largest_window_size = %10d / %f s\n', largest_window_size, largest_window_size * delta_t);
fprintf('largest_step_size = %10d / %f s\n', largest_step_size, largest_step_size * delta_t);
fprintf('smallest_window_size = %10d / %f s\n', smallest_window_size, smallest_window_size * delta_t);
fprintf('smallest_step_size = %10d / %f s\n', smallest_step_size, smallest_step_size * delta_t);
fprintf('total_window_count = %10d', total_window_count);
fprintf('\n\n');
%% FIND EWS TIMESERIES FOR EACH WINDOW SIZE
fprintf('EWS TIME SERIES\n');
fprintf('--------------------\n');
% Display progress bar and set progress to 0
Progress_Bar_func('begin', total_window_count);
for k = 1: total_window_count
% Update progress bar each time a new loop starts
send(progress_bar_data_queue, 'ongoing');
% Set window size and step size to calculate the corresponding EWS timeseries
window_size = window_size_list(k);
window_step = step_size_list(k);
% Generate EWS timeseries for particular window size
[EWS_details{k}, RateRMS_details{k}] = EWS_Timeseries(time, state_timeseries, parameter_variation, delta_t, window_size, window_step);
end
Progress_Bar_func('ended');
% Plot figure that shows some representative EWS time series evenly spread across window sizes
figure('Name', 'EWS_Representative');
EWS_representative_window_count = 9;
tiledlayout('flow', 'TileSpacing', 'compact', 'Padding', 'compact');
for k = floor(linspace(1, total_window_count, EWS_representative_window_count) )
nexttile;
plot(EWS_details{k}.time_window_ends, EWS_details{k}.AC_timeseries);
xlim([smallest_window_size * delta_t, time(end)]);
end
%% EXAMINING SIGNIFICANCE OF EWS TIME SERIES TRENDS
fprintf('SIGNIFICANCE VALUES OF EWS TIME SERIES\n');
fprintf('--------------------\n');
Progress_Bar_func('begin', total_window_count);
EWS_timeseries_lengths = zeros(1, total_window_count);
parfor k = 1: total_window_count
% Update progress bar each time a new loop starts
send(progress_bar_data_queue, 'ongoing');
n_ktau = length(EWS_details{k}.time_window_ends);
EWS_timeseries_lengths(k) = n_ktau;
% Generate Kendall-tau value and significance level time series. Calculate for increasing amounts of EWS time series data.
% Preallocate [tau, z, p, H] vectors for increasing amounts EWS time series data
time_EWS{k} = EWS_details{k}.time_window_ends;
tau{k} = zeros(1, n_ktau);
z{k} = zeros(1, n_ktau);
p{k} = zeros(1, n_ktau);
H{k} = zeros(1, n_ktau);
% Setting evaluation parameters
min_ktau_length = 5;
significance_value_ac = 0.05;
for j = min_ktau_length: n_ktau
% Prepare timeseries to be fed for calculating kendall-tau
time_ktau = EWS_details{k}.time_window_ends(1: j);
AC_timeseries_ktau = EWS_details{k}.AC_timeseries(1: j);
% Set significance value level to keep or discard autocorrelation at particular lags amongst the data.
print_bool = 0;
% Calculate Kendall-tau and determine whether to reject or retain null hypothesis
[tau{k}(j), z{k}(j), p{k}(j), H{k}(j)] = Modified_MannKendall_test(time_ktau, AC_timeseries_ktau, significance_value_tau, significance_value_ac, gpu_shift_critical_size, print_bool);
end
end
Progress_Bar_func('ended');
% Plot figure that shows some representative EWS time series evenly spread across window sizes. Also, plot points of maximum significance.
figure('Name', 'EWS_Representative_MaximumSignificance');
EWS_representative_window_count = 9;
tiledlayout('flow', 'TileSpacing', 'compact', 'Padding', 'compact');
for k = floor(linspace(1, total_window_count, EWS_representative_window_count) )
nexttile;
plot(time_EWS{k}, p{k});
xlim([smallest_window_size * delta_t, time(end)]);
end
%% MAKE PREDICTION MAP
% Normalize window size with largest window size, i.e. the one till bifurcation.
% Normalize time with bifurcation time.
my_time = horzcat(time_EWS{:});
tic_method_1_timer_1 = tic;
% METHOD - 1
% Join time series
my_H = horzcat(H{:});
y_val = repelem((window_size_list / largest_window_size), EWS_timeseries_lengths);
tic_sorting = tic;
% Sort the arrays
[my_time, time_order] = sort(my_time);
my_H = my_H(time_order);
y_val = y_val(time_order);
time_sorting = toc(tic_sorting);
my_H_1 = (my_H == H_val_to_match);
my_H_2 = (my_H == 2);
my_H_0 = ~(my_H_1 | my_H_2);
% Plot the prediction map
figure('Name', 'Prediction_Map_1');
plot(my_time(my_H_1), y_val(my_H_1), 'LineStyle', 'none', 'LineWidth', 1, 'Marker', 'o', 'MarkerSize', 5, 'MarkerFaceColor', PS.Grey4, 'MarkerEdgeColor' , PS.Grey5);
plot(my_time(my_H_2), y_val(my_H_2), 'LineStyle', 'none', 'LineWidth', 1, 'Marker', 'x', 'MarkerSize', 5, 'MarkerFaceColor', PS.Red1, 'MarkerEdgeColor' , PS.Red2);
plot(my_time(my_H_0), y_val(my_H_0), 'LineStyle', 'none', 'LineWidth', 1, 'Marker', 'o', 'MarkerSize', 5, 'MarkerFaceColor', PS.Grey1, 'MarkerEdgeColor' , PS.Grey2);
xlabel('Normalized Time');
ylabel('Normalized Window Size');
time_method_1_timer_1 = toc(tic_method_1_timer_1);
fprintf('time_method_1_timer_1 = %f\n', time_method_1_timer_1);
tic_method_2_timer_1 = tic;
% METHOD - 2
% Preallocate cell arrays
t_1 = cell(1, total_window_count); t_2 = t_1; t_0 = t_1;
y_val_1 = cell(1, total_window_count); y_val_2 = y_val_1; y_val_0 = y_val_1;
for k = 1: total_window_count
y_val = window_size_list(k) / largest_window_size;
% Note that below H_1 is for H_val_to_match, which may correspond to H = -1 or 1 as appropriate
H_1 = (H{k} == H_val_to_match);
H_2 = (H{k} == 2);
H_0 = ~(H_1 | H_2);
t_1{k} = time_EWS{k}(H_1) / bifurcation_time;
t_2{k} = time_EWS{k}(H_2) / bifurcation_time;
t_0{k} = time_EWS{k}(H_0) / bifurcation_time;
y_val_1{k} = y_val * ones(1, length(t_1{k}));
y_val_2{k} = y_val * ones(1, length(t_2{k}));
y_val_0{k} = y_val * ones(1, length(t_0{k}));
end
% Convert cell arrays into vectors to plot
t_1 = horzcat(t_1{:});
t_2 = horzcat(t_2{:});
t_0 = horzcat(t_0{:});
y_val_1 = horzcat(y_val_1{:});
y_val_2 = horzcat(y_val_2{:});
y_val_0 = horzcat(y_val_0{:});
% Plot the prediction map
figure('Name', 'Prediction_Map_2');
plot(t_1, y_val_1, 'LineStyle', 'none', 'LineWidth', 1, 'Marker', 'o', 'MarkerSize', 5, 'MarkerFaceColor', PS.Grey4, 'MarkerEdgeColor' , PS.Grey5);
plot(t_2, y_val_2, 'LineStyle', 'none', 'LineWidth', 1, 'Marker', 'x', 'MarkerSize', 5, 'MarkerFaceColor', PS.Red1, 'MarkerEdgeColor' , PS.Red2);
plot(t_0, y_val_0, 'LineStyle', 'none', 'LineWidth', 1, 'Marker', 'o', 'MarkerSize', 5, 'MarkerFaceColor', PS.Grey1, 'MarkerEdgeColor' , PS.Grey2);
xlabel('Normalized Time');
ylabel('Normalized Window Size');
time_method_2_timer_1 = toc(tic_method_2_timer_1);
fprintf('time_method_2_timer_1 = %f\n\n', time_method_2_timer_1);
%% PLOT PREDICTION FRACTION FROM SEARCHING ACTUAL DATA
% Prediction fraction at time t = (Number of H values in favor of the trend) / (Total H values) where both are measured at time t
tic_method_1_timer_2 = tic;
% Find and sort the unique time values at which prediction fraction will be calculated
time_prediction_frac = unique(my_time);
% Method - 1
for i = 1: length(time_prediction_frac)
t = time_prediction_frac(i);
% Time interval for doing averaging of prediction fraction - here taken to be a multiple of the smallest step size
% The largest value in diff(time_prediction_frac) = smallest_step_size
% Do only left side averaging otherwise we will end up using future data to determine current prediction fraction
n_steps_avg = 10;
t_interval = n_steps_avg * smallest_step_size * delta_t;
t_val_idx = ( (my_time >= (t - t_interval)) & (my_time <= t) );
H_taken = my_H(t_val_idx);
H_total(i) = length(H_taken);
H_favor(i) = sum(H_taken == H_val_to_match);
end
% Calculate prediction fraction
prediction_fraction_1 = H_favor ./ H_total;
time_method_1_timer_2 = toc(tic_method_1_timer_2);
fprintf('time_method_1_timer_2 = %f\n', time_method_1_timer_2);
tic_method_2_timer_2 = tic;
% Find and sort the unique time values at which prediction fraction will be calculated
time_prediction_frac = unique(horzcat(time_EWS{:}));
% Method - 2
% Preallocate vectors to hold number of H values in favor and the total H values at time t
H_favor = zeros(1, length(time_prediction_frac));
H_total = zeros(1, length(time_prediction_frac));
% Calculate values of the above variables at each instance
for i = 1: length(time_prediction_frac)
t = time_prediction_frac(i);
% Time interval for doing averaging of prediction fraction - here taken to be a multiple of the smallest step size
% The largest value in diff(time_prediction_frac) = smallest_step_size
% Do only left side averaging otherwise we will end up using future data to determine current prediction fraction
n_steps_avg = 10;
t_interval = n_steps_avg * smallest_step_size * delta_t;
% Check if this time is available for each EWS timeseries
for k = 1: total_window_count
for t_val = time_prediction_frac( (time_prediction_frac >= (t - t_interval)) & (time_prediction_frac <= t) )
% If available then add H values to corresponding vectors
t_idx = find(time_EWS{k} == t_val);
if ~isempty(t_idx)
H_total(i) = H_total(i) + 1;
if H{k}(t_idx) == H_val_to_match
H_favor(i) = H_favor(i) + 1;
end
end
end
end
end
% Calculate prediction fraction
prediction_fraction = H_favor ./ H_total;
time_method_2_timer_2 = toc(tic_method_2_timer_2);
fprintf('time_method_2_timer_2 = %f\n\n', time_method_2_timer_2);
figure('Name', 'Prediction_Fraction_SearchMethod');
% Plot the prediction fraction vs normalized time
plot(time_prediction_frac / bifurcation_time, prediction_fraction, 'LineStyle', 'none', 'Marker', '.', 'MarkerSize', 5, 'MarkerEdgeColor' , PS.Grey5);
xlabel('Normalized Time');
ylabel('Prediction Fraction');
fprintf('time_sorting = %f\n', time_sorting);
total_time_of_running = toc(tic_beginning);
fprintf('total_time_of_running = %f\n\n', total_time_of_running);
%% SAVE ALL FIGURES
figure_folder_name = sprintf('RPV_%.5f__OR_%.3f__SL_%.6f__SW_%d__TT_%.3f', rate_of_parameter_variation, overlap_ratio, significance_value_tau, smallest_window_size, time_transient);
figure_location = sprintf('Prediction_Maps/%s/%s', System_name, figure_folder_name);
total_figure_count = length(findobj('type','figure'));
% Check if the directory already exists, if it doesn't, create it
if not(isfolder(figure_location))
mkdir(figure_location)
end
% Save the figures
for i = 1: total_figure_count
fig_id = figure(i);
savefig(fig_id, sprintf('%s/%s.fig', figure_location, fig_id.Name));
% If figure is prediction map save it as bmp
if strcmp(fig_id.Name, 'Prediction_Map_2')
pred_map_image_file_location = sprintf('%s/%s.png', figure_location, fig_id.Name);
exportgraphics(fig_id, pred_map_image_file_location, 'Resolution', 1200);
end
end
return
%% PLOT PREDICTION FRACTION FROM IMAGE OF PREDICTION MAP
Colors_used.color_yes = [];
Colors_used.color_no = [];
prediction_fraction_from_Image = PredictionFraction_from_Image_func(pred_map_image_file_location, Colors_used);