@@ -111,3 +111,55 @@ to a `MPI <https://www.mpi-forum.org/docs/>`_ one or vice-versa, remove the
111
111
rm -rf build
112
112
pip install --config-settings mpi=1 ".[mpi]"
113
113
114
+ `GPU Tracking `_
115
+ ---------------
116
+ PyAT can be installed with GPU support, either `OpenCL <https://github.com/KhronosGroup/OpenCL-Guide/tree/main >`_ or
117
+ `CUDA <https://developer.nvidia.com/cuda-toolkit >`_, compatibility. GPU are especially interesting for tracking large
118
+ number of particle. The performance of the tracking is mainly related to the GPU double precision arithmetic performance.
119
+
120
+ OpenCL Installation
121
+ ...................
122
+ `OpenCL `_ and installable client driver (ICD) must be preliminary installed on the system either using linux packages or by
123
+ building the `OpenCL SDK <https://github.com/KhronosGroup/OpenCL-SDK> `::
124
+
125
+ sudo apt install opencl-headers ocl-icd-opencl-dev -y
126
+
127
+ Then you need to set the environment variable ``OCL_PATH `` to the SDK install path if you don't use a standard install::
128
+
129
+ export OCL_PATH=<sdk_intall_path>
130
+ or (on Windows)::
131
+
132
+ set OCL_PATH=C:\clpeak\build\sdk_instal
133
+
134
+ Note: `clpeak <https://github.com/krrishnarraj/clpeak> ` is a great OpenCL benchmarking tool that can be used to check system
135
+ performance (especially double precision floating point arithmetic) and to build the OpenCL SDK.
136
+
137
+ Install PyAT using the ``opencl `` flag::
138
+
139
+ cd <at>
140
+ rm -rf build
141
+ pip install --config-settings opencl=1 .
142
+
143
+ You can check the install as bellow, when no GPU support is enable, the method ``at.tracking.gpu_info() `` will return an empty list::
144
+
145
+ Z:\at>python
146
+ Python 3.11.5 (tags/v3.11.5:cce6ba9, Aug 24 2023, 14:38:34) [MSC v.1936 64 bit (AMD64)] on win32
147
+ Type "help", "copyright", "credits" or "license" for more information.
148
+ >>> import at
149
+ >>> at.tracking.gpu_info()
150
+ [['NVIDIA GeForce GTX 1050 Ti', '6.1', 6, 'NVIDIA CUDA OpenCL 3.0 CUDA 12.3.68'], ['Intel(R) UHD Graphics 630', '0.0', 24, 'Intel(R) OpenCL HD Graphics OpenCL 3.0 ']]
151
+
152
+ CUDA Installation
153
+ .................
154
+
155
+ `NVidia CUDA `_ toolkit must be preliminary installed on the system from `NVidia <https://developer.nvidia.com/cuda-downloads> `.
156
+ Set the environment variable ``CUDA_PATH ``::
157
+
158
+ export CUDA_PATH=/cvmfs/hpc.esrf.fr/software/packages/ubuntu20.04/x86_64/cuda/12.3.1
159
+ or on Windows::
160
+
161
+ set CUDA_PATH=CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.3
162
+ Install PyAT using the ``cuda `` flag::
163
+
164
+ pip install --config-settings cuda=1 .
165
+ You can check the install using the method ``at.tracking.gpu_info() `` as described above.
0 commit comments