diff --git a/astroplan/plots/time_dependent.py b/astroplan/plots/time_dependent.py index f2683dc2..fc4ec4f4 100644 --- a/astroplan/plots/time_dependent.py +++ b/astroplan/plots/time_dependent.py @@ -160,7 +160,7 @@ def plot_airmass(targets, observer, time, ax=None, style_kwargs=None, tzname = time.tzname() tzinfo = time.tzinfo else: - tzoffset = 0 * u.hour + tzoffset = 0 tzname = 'UTC' tzinfo = None # Populate time window if needed. @@ -202,51 +202,40 @@ def plot_airmass(targets, observer, time, ax=None, style_kwargs=None, # Shade background during night time if brightness_shading: start = time_ut[0] - end = time_ut[-1] - nights = [] - - next_sun_rise = observer.sun_rise_time(start, which='next') - sun_set = observer.sun_set_time(next_sun_rise, which='previous') - while (sun_set < end): - - # Calculate and order twilights and set plotting alpha for each - twilights = [ - (sun_set, 0.0), - (observer.twilight_evening_civil(next_sun_rise, which='previous'), 0.1), - (observer.twilight_evening_nautical(next_sun_rise, which='previous'), 0.2), - (observer.twilight_evening_astronomical(next_sun_rise, which='previous'), 0.3), - (observer.twilight_morning_astronomical(next_sun_rise, which='previous'), 0.4), - (observer.twilight_morning_nautical(next_sun_rise, which='previous'), 0.3), - (observer.twilight_morning_civil(next_sun_rise, which='previous'), 0.2), - (next_sun_rise, 0.1), - ] - nights.append(twilights) - - next_sun_rise = observer.sun_rise_time(next_sun_rise, which='next') - sun_set = observer.sun_set_time(next_sun_rise, which='previous') - - for twilights in nights: - # add 'UTC' to each datetime object created above - twilights = [(t[0].datetime.replace(tzinfo=pytz.utc), t[1]) - for t in twilights] - - twilights.sort(key=operator.itemgetter(0)) - - # add in left & right edges, so that if the airmass plot is requested - # during the day, night is properly shaded - left_edges = [(xlo.datetime.replace(tzinfo=tzinfo), twilights[0][1])] + twilights - right_edges = twilights + [(xhi.datetime.replace(tzinfo=tzinfo), twilights[0][1])] - - for tw_left, tw_right in zip(left_edges, right_edges): - left = tw_left[0] - right = tw_right[0] - if tzinfo is not None: - # convert to local time zone (which is plotted), then hack away the tzinfo - # so that matplotlib doesn't try to double down on the conversion - left = left.astimezone(tzinfo).replace(tzinfo=None) - right = right.astimezone(tzinfo).replace(tzinfo=None) - ax.axvspan(left, right, - ymin=0, ymax=1, color='grey', alpha=tw_right[1]) + + # Calculate and order twilights and set plotting alpha for each + twilights = [ + (observer.sun_set_time(start, which='next'), 0.0), + (observer.twilight_evening_civil(start, which='next'), 0.1), + (observer.twilight_evening_nautical(start, which='next'), 0.2), + (observer.twilight_evening_astronomical(start, which='next'), 0.3), + (observer.twilight_morning_astronomical(start, which='next'), 0.4), + (observer.twilight_morning_nautical(start, which='next'), 0.3), + (observer.twilight_morning_civil(start, which='next'), 0.2), + (observer.sun_rise_time(start, which='next'), 0.1), + ] + + # add 'UTC' to each datetime object created above + twilights = [(t[0].datetime.replace(tzinfo=pytz.utc), t[1]) + for t in twilights] + + twilights.sort(key=operator.itemgetter(0)) + + # add in left & right edges, so that if the airmass plot is requested + # during the day, night is properly shaded + left_edges = [(xlo.datetime.replace(tzinfo=tzinfo), twilights[0][1])] + twilights + right_edges = twilights + [(xhi.datetime.replace(tzinfo=tzinfo), twilights[0][1])] + + for tw_left, tw_right in zip(left_edges, right_edges): + left = tw_left[0] + right = tw_right[0] + if tzinfo is not None: + # convert to local time zone (which is plotted), then hack away the tzinfo + # so that matplotlib doesn't try to double down on the conversion + left = left.astimezone(tzinfo).replace(tzinfo=None) + right = right.astimezone(tzinfo).replace(tzinfo=None) + ax.axvspan(left, right, + ymin=0, ymax=1, color='grey', alpha=tw_right[1]) # Invert y-axis and set limits. y_lim = ax.get_ylim() @@ -499,14 +488,28 @@ def plot_schedule_airmass(schedule, show_night=False): np.linspace(0, (schedule.end_time - schedule.start_time).value, 100) * u.day) targ_to_color = {} color_idx = np.linspace(0, 1, len(targets)) - enable_brightness_shading = show_night # lighter, bluer colors indicate higher priority for target, ci in zip(set(targets), color_idx): - plot_airmass(target, schedule.observer, ts, - style_kwargs=dict(color=plt.cm.cool(ci)), - brightness_shading=enable_brightness_shading) + plot_airmass(target, schedule.observer, ts, style_kwargs=dict(color=plt.cm.cool(ci))) targ_to_color[target.name] = plt.cm.cool(ci) - enable_brightness_shading = False + if show_night: + # I'm pretty sure this overlaps a lot, creating darker bands + for test_time in ts: + midnight = schedule.observer.midnight(test_time) + previous_sunset = schedule.observer.sun_set_time( + midnight, which='previous') + next_sunrise = schedule.observer.sun_rise_time( + midnight, which='next') + + previous_twilight = schedule.observer.twilight_evening_astronomical( + midnight, which='previous') + next_twilight = schedule.observer.twilight_morning_astronomical( + midnight, which='next') + + plt.axvspan(previous_sunset.plot_date, next_sunrise.plot_date, + facecolor='lightgrey', alpha=0.05) + plt.axvspan(previous_twilight.plot_date, next_twilight.plot_date, + facecolor='lightgrey', alpha=0.05) for block in blocks: if hasattr(block, 'target'):