-
Notifications
You must be signed in to change notification settings - Fork 7
/
test_mol.py
449 lines (347 loc) · 17.2 KB
/
test_mol.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
"""
Test molecules on Pasithea. Visualize molecular transformations.
"""
import torch
import yaml
import numpy as np
import os
from torch import nn
from random import shuffle
from utilities import data_loader
from utilities import plot_utils
from utilities.mol_utils import multiple_selfies_to_hot, edit_hot, lst_of_logP, multiple_hot_to_indices
from utilities.utils import make_dir, change_str, use_gpu
class fc_model(nn.Module):
def __init__(self, len_max_molec1Hot, num_of_neurons_layer1,
num_of_neurons_layer2, num_of_neurons_layer3):
"""
Fully Connected layers for the RNN.
"""
super(fc_model, self).__init__()
# Reduce dimension upto second last layer of Encoder
self.encode_4d = nn.Sequential(
nn.Linear(len_max_molec1Hot, num_of_neurons_layer1),
nn.ReLU(),
nn.Linear(num_of_neurons_layer1, num_of_neurons_layer2),
nn.ReLU(),
nn.Linear(num_of_neurons_layer2, num_of_neurons_layer3),
nn.ReLU(),
nn.Linear(num_of_neurons_layer3, 1)
)
def forward(self, x):
"""
Pass through the model
"""
# Go down to dim-4
h1 = self.encode_4d(x)
return h1
def train_model(parent_dir, directory, args, model,
upperbound, data_train, data_train_prop, data_test,
data_test_prop, lr_enc, num_epochs, batch_size):
"""Train the model"""
# initialize an instance of the model
optimizer_encoder = torch.optim.Adam(model.parameters(), lr=lr_enc)
# reshape for efficient parallelization
data_train=torch.tensor(data_train, dtype=torch.float, device=args.device)
data_test=torch.tensor(data_test, dtype=torch.float, device=args.device)
reshaped_data_train = torch.reshape(data_train,
(data_train.shape[0],
data_train.shape[1]*data_train.shape[2]))
reshaped_data_test = torch.reshape(data_test,
(data_test.shape[0],
data_test.shape[1]*data_test.shape[2]))
# add random noise to one-hot encoding
reshaped_data_test_edit = edit_hot(reshaped_data_test, upperbound)
data_train_prop=torch.tensor(data_train_prop,
dtype=torch.float, device=args.device)
data_test_prop=torch.tensor(data_test_prop,
dtype=torch.float, device=args.device)
test_loss=[]
train_loss=[]
avg_test_loss=[]
min_loss = 1
for epoch in range(num_epochs):
# add stochasticity to the training
x = [i for i in range(len(reshaped_data_train))] # random shuffle input
shuffle(x)
reshaped_data_train = reshaped_data_train[x]
data_train_prop = data_train_prop[x]
reshaped_data_train_edit = edit_hot(reshaped_data_train,
upper_bound=upperbound)
for batch_iteration in range(int(len(reshaped_data_train_edit)/batch_size)):
current_smiles_start, current_smiles_stop = \
batch_iteration * batch_size, (batch_iteration + 1) * batch_size
# slice data into batches
curr_mol=reshaped_data_train_edit[current_smiles_start : \
current_smiles_stop]
curr_prop=data_train_prop[current_smiles_start : \
current_smiles_stop]
# feedforward step
calc_properties = model(curr_mol)
calc_properties=torch.reshape(calc_properties,[len(calc_properties)])
# mean-squared error between calculated property and modelled property
criterion = nn.MSELoss()
real_loss=criterion(calc_properties, curr_prop)
loss = torch.clamp(real_loss, min = 0., max = 50000.).double()
# backpropagation step
optimizer_encoder.zero_grad()
loss.backward()
optimizer_encoder.step()
# calculate train set
calc_train_set_property = model(reshaped_data_train_edit)
calc_train_set_property=torch.reshape(calc_train_set_property,
[len(calc_train_set_property)])
criterion = nn.MSELoss()
real_loss_train=criterion(calc_train_set_property, data_train_prop)
real_loss_train_num=real_loss_train.detach().cpu().numpy()
# calculate test set
calc_test_set_property = model(reshaped_data_test_edit)
criterion = nn.MSELoss()
calc_test_set_property=torch.reshape(calc_test_set_property,
[len(calc_test_set_property)])
real_loss_test=criterion(calc_test_set_property, data_test_prop)
real_loss_test_num=real_loss_test.detach().cpu().numpy()
print('epoch: '+str(epoch)+' - avg loss: '+ \
str(np.mean(real_loss_train_num))+', testset: '+ \
str(np.mean(real_loss_test_num)))
test_loss.append(real_loss_test_num)
train_loss.append(real_loss_train_num)
if real_loss_test_num < min_loss:
min_loss = real_loss_test_num
torch.save(model.state_dict(), parent_dir)
print('Test loss decrease, model saved to file')
# stopping criterion: compare the running test loss averages over 90 epochs
if len(test_loss)>=100:
avg = sum(test_loss[len(test_loss)-90:len(test_loss)])
avg_test_loss.append(avg)
print(avg_test_loss)
if len(avg_test_loss)>=50 and avg>avg_test_loss[len(avg_test_loss)-40]:
print('Train loss is increasing, stop training')
# plot training results
real_vals_prop_train=data_train_prop.detach().cpu().numpy()
real_vals_prop_test=data_test_prop.detach().cpu().numpy()
calc_train=calc_train_set_property.detach().cpu().numpy()
calc_test=calc_test_set_property.detach().cpu().numpy()
plot_utils.running_avg_test_loss(avg_test_loss, directory)
plot_utils.test_model_after_train(calc_train, real_vals_prop_train,
calc_test,real_vals_prop_test,
directory)
plot_utils.prediction_loss(train_loss, test_loss, directory)
break
def load_model(file_name, args, len_max_molec1Hot, model_parameters):
"""Load existing model state dict from file"""
model = fc_model(len_max_molec1Hot, **model_parameters).to(device=args.device)
model.load_state_dict(torch.load(file_name))
model.eval()
return model
def train(directory, args, model_parameters, len_max_molec1Hot, upperbound,
data_train, prop_vals_train, data_test, prop_vals_test, lr_train,
num_epochs, batch_size):
name = change_str(directory)+'/model.pt'
if os.path.exists(name):
model = load_model(name, args, len_max_molec1Hot, model_parameters)
print('Testing model...')
test_model(directory, args, model,
data_train, prop_vals_train, upperbound)
else:
print('No models saved in file with current settings.')
model = fc_model(len_max_molec1Hot, **model_parameters).to(device=args.device)
model.train()
print('len(data_train): ',len(data_train))
print("start training")
train_model(name, directory, args, model, upperbound,
data_train, prop_vals_train, data_test, prop_vals_test,
lr_train, num_epochs, batch_size)
model = fc_model(len_max_molec1Hot, **model_parameters).to(device=args.device)
model.load_state_dict(torch.load(name))
model.eval()
print('Testing model...')
test_model(directory, args, model,
data_train, prop_vals_train, upperbound)
print('finished training and testing, now start dreaming :)\n\n\n')
return model
def test_model(directory, args, model, data, data_prop, upperbound):
"""Test model to ensure it is sufficiently trained before dreaming."""
test_data = torch.tensor(data, dtype=torch.float, device=args.device)
computed_data_prop = torch.tensor(data_prop, device=args.device)
# reshape for efficient parallelization
test_data = test_data.reshape(test_data.shape[0],
test_data.shape[1] * test_data.shape[2])
# add random noise to one-hot encoding with specified upperbound
test_data_edit = edit_hot(test_data, upperbound)
# feedforward step
trained_data_prop = model(test_data_edit)
trained_data_prop = trained_data_prop.reshape(data.shape[0]).clone().detach().numpy()
# compare ground truth data to modelled data
plot_utils.test_model_before_dream(trained_data_prop, computed_data_prop,
directory)
def dream_model(model, prop, largest_molecule_len, alphabet, upperbound,
data_train, lr, batch_size, num_epochs, display=True):
"""
Trains in the inverse of the model with a single molecular input.
Returns initial, final, and intermediate molecules/property values
in the transformation;
the percent of valid transformations;
the list of loss terms during dreaming;
and the list of epochs at which the molecule transformed during dreaming.
"""
loss_prediction=[]
# reshape for efficient parallelization
data_train = data_train.reshape(data_train.shape[0],
data_train.shape[1] * data_train.shape[2])
# add random noise to one-hot encoding
data_train_edit = edit_hot(data_train, upper_bound=upperbound)
data_train_var=torch.autograd.Variable(data_train_edit, requires_grad=True)
data_train_prop=torch.tensor([prop], dtype=torch.float)
# convert one-hot encoding to SMILES molecule
molecule_reshaped=torch.reshape(data_train_var,
(1, largest_molecule_len,
len(alphabet)))
gathered_indices = multiple_hot_to_indices(molecule_reshaped)
prop_of_mol, smiles_of_mol=lst_of_logP(gathered_indices, alphabet)
#initiailize list of intermediate property values and molecules
interm_prop = [prop_of_mol[0]]
interm_mols = [smiles_of_mol[0]]
epoch_transformed = [0]
steps = 0
valid_steps = 0
# initialize an instance of the model
optimizer_encoder = torch.optim.Adam([data_train_var], lr=lr)
for epoch in range(num_epochs):
# feedforward step
calc_properties = model(data_train_var)
# mean squared error between target and calculated property
calc_properties = calc_properties.reshape(batch_size)
criterion = nn.MSELoss()
real_loss=criterion(calc_properties, data_train_prop)
loss = torch.clamp(real_loss, min = 0., max = 50000.).double()
# backpropagation step
optimizer_encoder.zero_grad()
loss.backward()
optimizer_encoder.step()
real_loss=loss.detach().numpy()
loss_prediction.append(real_loss)
if epoch%100==0:
if display:
print('epoch: ',epoch,', loss: ', real_loss)
# convert one-hot encoding to SMILES molecule
molecule_reshaped=torch.reshape(data_train_var,
(1, largest_molecule_len,
len(alphabet)))
gathered_indices = multiple_hot_to_indices(molecule_reshaped)
prop_of_mol, smiles_of_mol=lst_of_logP(gathered_indices, alphabet)
if len(interm_prop)==0 or interm_prop[len(interm_prop)-1] != prop_of_mol[0]:
# collect intermediate molecules
interm_mols.append(smiles_of_mol[0])
interm_prop.append(prop_of_mol[0])
steps+=1
epoch_transformed.append(epoch+1)
if len(interm_prop)>1:
# determine validity of transformation
previous_prop = interm_prop[len(interm_prop)-2]
current_prop = prop_of_mol[0]
valid = (prop > previous_prop and current_prop > previous_prop) \
or (prop < previous_prop and current_prop < previous_prop)
if valid:
valid_steps += 1
if real_loss<1e-3:
if display:
print('Small loss, stop dreaming at epoch ', epoch)
break
if len(loss_prediction)>1000:
if 0.99*loss_prediction[-900]<loss_prediction[-1]:
if display:
print('Too small decrease, stop dreaming at epoch ', epoch)
break
percent_valid_transform = None
if steps > 0:
percent_valid_transform = valid_steps / steps *100
return interm_prop, interm_mols, percent_valid_transform, loss_prediction, epoch_transformed
def mol_transform(mols, model, prop, largest_molecule_len, alphabet,
upperbound_dr, lr_dream, dreaming_parameters, plot=False):
"""Dreaming procedure for a set of molecules. Plots and saves to file
the logP and loss evolution over number of epochs if desired."""
for i, mol in enumerate(mols):
mol = torch.reshape(mol, (1, mol.shape[0], mol.shape[1]))
(track_prop, track_mol,
percent_valid_interm,
track_loss,
epoch_transformed) = dream_model(model = model,
prop=prop,
largest_molecule_len=largest_molecule_len,
alphabet=alphabet,
upperbound = upperbound_dr,
data_train=mol,
lr=lr_dream,
**dreaming_parameters,
display=False)
mol1_prop = track_prop[0]
mol2_prop = track_prop[len(track_prop)-1]
mol1 = track_mol[0]
mol2 = track_mol[len(track_mol)-1]
transform = mol1+' --> '+mol2+', '+str(mol1_prop)+' --> '+str(mol2_prop)
print('Transformation '+ str(i+1)+': '+transform)
print(track_mol)
if plot:
plot_utils.plot_transform(prop, track_mol, track_prop,
epoch_transformed, track_loss)
if __name__ == '__main__':
# import hyperparameter and training settings from yaml
print('Start reading data file...')
settings=yaml.load(open("settings.yml","r"))
test = settings['test_model']
plot = settings['plot_transform']
mols = settings['mols']
file_name = settings['data_preprocess']['smiles_file']
lr_train=settings['lr_train']
lr_train=float(lr_train)
lr_dream=settings['lr_dream']
lr_dream=float(lr_dream)
batch_size=settings['training']['batch_size']
num_epochs = settings['training']['num_epochs']
model_parameters = settings['model']
dreaming_parameters = settings['dreaming']
training_parameters = settings['training']
training_parameters_str = '{}_{}'.format(training_parameters['num_epochs'],
training_parameters['batch_size'])
data_parameters = settings['data']
data_parameters_str = '{}_{}'.format(data_parameters['num_train'],
data_parameters['num_dream'])
upperbound_tr = settings['upperbound_tr']
upperbound_dr = settings['upperbound_dr']
prop=settings['property_value']
num_train = settings['data']['num_train']
num_dream = settings['data']['num_dream']
num_mol = num_train
if num_dream > num_train:
num_mol = num_dream
directory = change_str('dream_results/{}_{}/{}/{}' \
.format(data_parameters_str,
training_parameters_str,
upperbound_tr,
lr_train))
make_dir(directory)
args = use_gpu()
# data-preprocessing
data, prop_vals, alphabet, len_max_molec1Hot, largest_molecule_len = \
data_loader.preprocess(num_mol, file_name)
if test:
data_train, data_test, prop_vals_train, prop_vals_test \
= data_loader.split_train_test(data, prop_vals, num_train, 0.85)
# also need to test if the model is fine
model = train(directory, args, model_parameters, len_max_molec1Hot,
upperbound_tr, data_train, prop_vals_train, data_test,
prop_vals_test, lr_train, num_epochs, batch_size)
else:
model = load_model(directory+'/model.pt', args, len_max_molec1Hot,
model_parameters)
# convert from SMILES to SELFIES
selfies_lst, _ = data_loader.get_selfie_and_smiles_encodings(mols)
# convert from SELFIES to one-hot encoding
mols = multiple_selfies_to_hot(selfies_lst,
largest_molecule_len,
alphabet)
mols = torch.tensor(mols, dtype=torch.float, device=args.device)
# molecular transformations
mol_transform(mols, model, prop, largest_molecule_len, alphabet,
upperbound_dr, lr_dream, dreaming_parameters, plot)