forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_pytorch_onnx_shape_inference.py
212 lines (180 loc) · 9.01 KB
/
test_pytorch_onnx_shape_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Owner(s): ["module: onnx"]
import unittest
import numpy as np
from test_pytorch_common import skipIfUnsupportedMinOpsetVersion
import torch
from torch.onnx import _constants
from torch.onnx.symbolic_helper import _set_onnx_shape_inference, _set_opset_version
def expect_tensor(scalar_type, shape=None):
def verify(actual_type):
np.testing.assert_equal(actual_type.scalarType(), scalar_type)
# if shape is not None:
# np.testing.assert_equal(actual_type.sizes(), shape)
if shape is not None:
np.testing.assert_equal(actual_type.varyingSizes(), shape)
return verify
class TestONNXShapeInference(unittest.TestCase):
def __init__(self, *args, **kwargs):
unittest.TestCase.__init__(self, *args, **kwargs)
self.opset_version = _constants.onnx_main_opset
_set_onnx_shape_inference(True)
_set_opset_version(self.opset_version)
def run_test(self, g, n, type_assertion_funcs):
if not isinstance(type_assertion_funcs, list):
type_assertion_funcs = [type_assertion_funcs]
torch._C._jit_pass_onnx_graph_shape_type_inference(g, {}, self.opset_version)
for out, type_assertion_func in zip(n.outputs(), type_assertion_funcs):
type_assertion_func(out.type())
def create_empty_graph(self):
g = torch._C.Graph()
# kick off initialization for ConstantMap.
torch._C._jit_pass_onnx_graph_shape_type_inference(g, {}, self.opset_version)
return g
def insert_tensor_constant(self, g, tensor):
return g.op("Constant", value_t=tensor)
def test_cast(self):
# Test cast with input of unknown scalar type.
g = self.create_empty_graph()
input = g.addInput()
cast_out = g.op("Cast", input, to_i=1)
self.run_test(g, cast_out.node(), expect_tensor("Float"))
def test_constant_of_shape(self):
# Test ConstantOfShape with input of onnx::Shape node.
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(1, 2, 3, 4))
shape = g.op("Shape", constant)
constant_of_shape = g.op("ConstantOfShape", shape, value_t=torch.tensor([2.0]))
self.run_test(
g, constant_of_shape.node(), expect_tensor("Float", shape=(1, 2, 3, 4))
)
def test_constant_of_shape_static(self):
# Test ConstantOfShape with input of prim::ListConstruct of static tensor
rank = 4
g = self.create_empty_graph()
constants = [
self.insert_tensor_constant(g, torch.tensor(i + 1)) for i in range(rank)
]
shape = g.op("prim::ListConstruct", *constants)
shape.setType(torch._C.ListType.ofInts())
constant_of_shape = g.op("ConstantOfShape", shape, value_t=torch.tensor([2.0]))
self.run_test(
g, constant_of_shape.node(), expect_tensor("Float", shape=(1, 2, 3, 4))
)
def test_constant_of_shape_dynamic(self):
# Test ConstantOfShape with input of prim::ListConstruct of dynamic tensor
rank = 4
g = self.create_empty_graph()
inputs = [g.addInput() for i in range(rank)]
shape = g.op("prim::ListConstruct", *inputs)
shape.setType(torch._C.ListType.ofInts())
constant_of_shape = g.op("ConstantOfShape", shape, value_t=torch.tensor([2.0]))
self.run_test(
g,
constant_of_shape.node(),
expect_tensor("Float", shape=(None, None, None, None)),
)
def test_gather_dynamic_index(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(
input.type().with_dtype(torch.float).with_sizes([None, 3, 16, 16])
)
indices = g.addInput()
indices.setType(indices.type().with_dtype(torch.int64).with_sizes([None]))
output = g.op("Gather", input, indices, axis_i=1)
self.run_test(
g, output.node(), expect_tensor("Float", shape=([None, None, 16, 16]))
)
def test_gather_scalar_index(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(
input.type().with_dtype(torch.float).with_sizes([None, 3, 16, 16])
)
indices = self.insert_tensor_constant(g, torch.tensor(1))
output = g.op("Gather", input, indices, axis_i=1)
self.run_test(g, output.node(), expect_tensor("Float", shape=([None, 16, 16])))
def test_reshape(self):
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(2, 16, 5, 5))
constant_2 = self.insert_tensor_constant(g, torch.tensor([2, 0, -1]))
shape = g.op("Reshape", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(2, 16, 25)))
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(2, 16, 5, 4))
constant_2 = self.insert_tensor_constant(g, torch.tensor([-1, 0, 4]))
shape = g.op("Reshape", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(10, 16, 4)))
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(2, 16, 5, 4))
constant_2 = self.insert_tensor_constant(g, torch.tensor([-1, 0, 0]))
shape = g.op("Reshape", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(8, 16, 5)))
def test_reshape_symbolic(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_sizes([None, None, 2, 8]))
constant = self.insert_tensor_constant(g, torch.tensor([0, 0, -1]))
output = g.op("Reshape", input, constant)
self.run_test(g, output.node(), expect_tensor(None, shape=(None, None, 16)))
@skipIfUnsupportedMinOpsetVersion(14)
def test_reshape_allowzero(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_sizes([3, 4, 0]))
constant = self.insert_tensor_constant(g, torch.tensor([0, 4, 3]))
output = g.op("Reshape", input, constant, allowzero_i=1)
self.run_test(g, output.node(), expect_tensor(None, shape=(0, 4, 3)))
def test_slice(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_sizes([None, None]))
start_input = g.addInput()
start_input.setType(start_input.type().with_sizes([None]))
end = self.insert_tensor_constant(g, torch.tensor([3]))
axis = self.insert_tensor_constant(g, torch.tensor([0]))
step = self.insert_tensor_constant(g, torch.tensor([1]))
slice = g.op("Slice", input, start_input, end, axis, step)
self.run_test(g, slice.node(), expect_tensor(None, shape=(None, None)))
def test_broadcast_matmul(self):
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(5, 1, 2))
constant_2 = self.insert_tensor_constant(g, torch.ones(3, 1, 2, 1))
shape = g.op("MatMul", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(3, 5, 1, 1)))
# test when first input is of rank 1
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(2))
constant_2 = self.insert_tensor_constant(g, torch.ones(3, 1, 2, 1))
shape = g.op("MatMul", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(3, 1, 1)))
# test when second input is of rank 1
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(5, 1, 2))
constant_2 = self.insert_tensor_constant(g, torch.ones(2))
shape = g.op("MatMul", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(5, 1)))
# test when both inputs are of rank 1
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(2))
constant_2 = self.insert_tensor_constant(g, torch.ones(2))
shape = g.op("MatMul", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=()))
def test_expand(self):
g = self.create_empty_graph()
input = g.addInput()
constant = self.insert_tensor_constant(g, torch.ones(2, 4))
input.setType(constant.type().with_sizes([None, None]))
shape = g.op("Shape", input)
expand = g.op("Expand", constant, shape)
self.run_test(g, expand.node(), expect_tensor("Float", shape=(None, None)))
def test_pad(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.float).with_sizes([3, 320, 100]))
constant = self.insert_tensor_constant(g, torch.ones(6, dtype=torch.long))
none = g.op("prim::Constant").setType(torch.NoneType.get())
pad = g.op("Pad", input, constant, none, mode_s="constant")
self.run_test(g, pad.node(), expect_tensor("Float", shape=(None, None, None)))
if __name__ == "__main__":
unittest.main()