-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
269 lines (199 loc) · 12.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import os
import sys
import json
import pytz
import argparse
import datetime
from sklearn.metrics import classification_report
import torch
from .dataset import FewShotDataset
METHODS = ['zeroshot', 'coop', 'cocoop', 'palm']
def get_model(args, pengi, palm):
print(f"Using Method: '{args.model_name.upper()}'\n")
if args.model_name == 'zeroshot':
model = palm.ZeroShot(args, pengi)
elif args.model_name == 'coop':
model = palm.COOP(args, pengi)
elif args.model_name == 'cocoop':
model = palm.COCOOP(args, pengi)
elif args.model_name == 'palm':
model = palm.PALM(args, pengi)
# raise NotImplementedError("Model 'palm' is not implemented yet.")
else:
raise ValueError(f"Model '{args.model_name}' is not supported. Choose from: [{', '.join(METHODS)}]")
return model
def get_dataloaders(args):
train_dataset = FewShotDataset(args.dataset_root, 'train' , num_shots=args.num_shots, repeat=args.repeat , process_audio_fn=args.process_audio_fn, resample=args.resample)
test_dataset = FewShotDataset(args.dataset_root, 'test' , num_shots=-1, repeat=args.repeat , process_audio_fn=args.process_audio_fn, resample=args.resample)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=4)
test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=128, shuffle=False, num_workers=4)
return train_dataloader, test_dataloader
def save_model(args, model, save_model_path):
print(f"Saving Context Weights for Method: '{args.model_name.upper()}'\n")
if args.model_name in ['coop', 'cocoop', 'palm']:
checkpoint = {'prompt_learner': model.prompt_learner.state_dict()}
checkpoint['pengi_bn0_buffer'] = {'running_mean': model.audio_encoder.base.htsat.bn0.running_mean.clone(),
'running_var': model.audio_encoder.base.htsat.bn0.running_var.clone(),
'num_batches_tracked': model.audio_encoder.base.htsat.bn0.num_batches_tracked.clone()}
torch.save(checkpoint, save_model_path)
else:
raise ValueError(f"Model '{args.model_name}' is not supported. Choose from: [{', '.join(METHODS)}]")
def load_model(args, model):
load_model_path = get_load_model_path(args)
checkpoint = torch.load(load_model_path)
model.prompt_learner.load_state_dict(checkpoint['prompt_learner'])
model.audio_encoder.base.htsat.bn0.running_mean.copy_(checkpoint['pengi_bn0_buffer']['running_mean'])
model.audio_encoder.base.htsat.bn0.running_var.copy_(checkpoint['pengi_bn0_buffer']['running_var'])
model.audio_encoder.base.htsat.bn0.num_batches_tracked.copy_(checkpoint['pengi_bn0_buffer']['num_batches_tracked'])
# raise NotImplementedError("\n\nLoading model is not implemented yet.\n\n")
def get_save_model_path(args):
save_model_path = os.path.join(args.save_model_path, args.model_name)
if not os.path.exists(save_model_path): os.mkdir(save_model_path)
save_model_path = os.path.join(save_model_path, f"{args.exp_name+'-SEED'+str(args.seed)}.pth")
return save_model_path
def get_load_model_path(args):
if args.load_model_abs_path is not None:
load_model_path = args.load_model_abs_path
else:
load_model_path = os.path.join(args.load_model_path, args.model_name, f"{args.exp_name+'-SEED'+str(args.seed)}.pth")
if not os.path.exists(load_model_path):
raise ValueError(f"Model file '{load_model_path}' does not exist. Specify the correct path to the model file.")
return load_model_path
def get_args():
parser = argparse.ArgumentParser(description='PALM: Prompt-based Few-Shot Learning for Audio Language Models')
parser.add_argument('--model_name', type=str, default='', help='Model Name (default: None)', required=True)
parser.add_argument('--save_model', help='Save the trained model (default: False)', action='store_true')
parser.add_argument('--save_model_path', type=str, default=None, help='Path to save the trained model (default: None)')
parser.add_argument('--load_model_path', type=str, default=None, help='Path to the pre-trained model (learnable context) weights (default: None)')
parser.add_argument('--load_model_abs_path', type=str, default=None, help='Absolute path to the pre-trained model (learnable context) weights (default: None)')
parser.add_argument('--dataset_root', type=str, default='', help='Path to the dataset root directory (default: None)', required=True)
parser.add_argument('--n_epochs', type=int, default=100, help='Number of epochs (default: 100)')
parser.add_argument('--start_epoch', type=int, default=0, help='Starting epoch (default: 0)')
parser.add_argument('--freq_test_model', type=int, default=10, help='Frequency of testing the model (default: 10)')
parser.add_argument('--spec_aug', help='Apply Spectrogram Augmentation (default: False)', action='store_true')
parser.add_argument('--batch_size', type=int, default=16, help='Batch Size (default: 16)')
parser.add_argument('--lr', type=float, default=0.001, help='Learning Rate (default: 0.001)')
parser.add_argument('--seed', type=int, default=0, help='Random Seed (default: 0)')
parser.add_argument('--eval_only', help='Evaluate the model only (default: False)', action='store_true')
parser.add_argument('--exp_name', type=str, default='', help='experiment name', required=True)
parser.add_argument('--do_logging', help='Disable Logging (default: False)', action='store_true')
parser.add_argument('--prompt_prefix', type=str, default='The is a recording of ', help='Prompt Prefix (default: The is a recording of )')
# COOP/COCOOP and PALM Arguments
parser.add_argument('--n_ctx', type=int, default=16, help='Number of context tokens (default: 16)')
parser.add_argument('--ctx_dim', type=int, default=512, help='Dimension of the context vector (default: 512)')
# Few-Shot Learning Arguments
parser.add_argument('--num_shots', type=int, default=16, help='Number of shots (default: 16)')
parser.add_argument('--resample', type=bool, default=True, help='Resample samples if needed (default: True)')
parser.add_argument('--repeat', type=bool, default=False, help='Repeat samples if needed (default: False)')
args = parser.parse_args()
# Sanity check on Arguments
if not os.path.exists(args.dataset_root):
raise ValueError(f"\n\nDirectory '{args.dataset_root}' does not exist. Specify the correct path to the dataset.\n\n")
if args.save_model and not os.path.exists(args.save_model_path):
raise ValueError(f"\n\nDirectory '{args.save_model_path}' does not exist. Create or specify the correct the directory to save the trained model.\n\n")
if args.eval_only:
load_model_path = get_load_model_path(args)
if not os.path.exists(load_model_path): raise ValueError(f"\n\nEvaluation Mode: Model file '{load_model_path}' does not exist. Specify the correct path to the model file.\n\n")
if args.model_name == 'zeroshot': args.eval_only = True
return args
def print_total_time(now_start, now_end):
print(f'\nEnd Time & Date = {now_end.strftime("%I:%M %p")} , {now_end.strftime("%d_%b_%Y")}\n')
duration_in_s = (now_end - now_start).total_seconds()
days = divmod(duration_in_s, 86400) # Get days (without [0]!)
hours = divmod(days[1], 3600) # Use remainder of days to calc hours
minutes = divmod(hours[1], 60) # Use remainder of hours to calc minutes
seconds = divmod(minutes[1], 1) # Use remainder of minutes to calc seconds
print(f"Total Time => {int(days[0])} Days : {int(hours[0])} Hours : {int(minutes[0])} Minutes : {int(seconds[0])} Seconds\n\n")
def print_dataset_info(train_dataloader, test_dataloader):
n_classes = train_dataloader.dataset.n_classes
num_batches_train = len(train_dataloader)
num_batches_test = len(test_dataloader)
print("\n########################\nDataset Information\n########################\n")
print("Length of the Train Dataset: ", len(train_dataloader.dataset))
print("Length of the Test Dataset: ", len(test_dataloader.dataset))
print("Train Batch Size: ", train_dataloader.batch_size)
print("Test Batch Size: ", test_dataloader.batch_size)
print("Number of Batches in Train Dataloader: ", num_batches_train)
print("Number of Batches in Test Dataloader: ", num_batches_test)
print("Number of Classes: ", n_classes)
def get_scores(actual_labels, predicted_labels, classnames):
cls_report = classification_report(actual_labels, predicted_labels, target_names=classnames, output_dict=True)
accuracy = cls_report['accuracy']
f1_score = cls_report['macro avg']['f1-score']
precision = cls_report['macro avg']['precision']
recall = cls_report['macro avg']['recall']
return accuracy, f1_score, precision, recall
def print_scores(accuracy, f1_score, precion, recall, avg_loss):
print(f"{'Accuracy':<15} = {accuracy:0.4f}")
print(f"{'F1-Score':<15} = {f1_score:0.4f}")
print(f"{'Precision':<15} = {precion:0.4f}")
print(f"{'Recall':<15} = {recall:0.4f}")
print(f"{'Average Loss':<15} = {avg_loss:0.4f}\n\n")
def save_scores(seed, epoch, accuracy, f1_score, precision, recall, avg_loss, json_file_path):
if not os.path.exists(json_file_path):
# create the file if it doesn't exist
with open(json_file_path, "w") as file:
file.write("{}")
# load existing results
with open(json_file_path, "r") as file:
scores_json = json.load(file)
scores_json[f"seed_{seed}"] = {"accuracy": f"{accuracy:0.4f}", "f1_score": f"{f1_score:0.4f}", "precision": f"{precision:0.4f}", "recall": f"{recall:0.4f}", "avg_loss": f"{avg_loss:0.4f}", "epoch": epoch}
for metric in scores_json[f"seed_{seed}"].keys():
if metric != 'epoch': scores_json[f"seed_{seed}"][metric] = float(scores_json[f"seed_{seed}"][metric])
# save updated results
with open(json_file_path, "w") as file:
json.dump(scores_json, file, indent=2)
# Decorator to measure the time taken by a function
def timeit(func):
import time
def wrapper(*args, **kwargs):
start = time.time()
result = func(*args, **kwargs)
end = time.time()
duration_in_s = end - start
days = divmod(duration_in_s, 86400) # Get days (without [0]!)
hours = divmod(days[1], 3600) # Use remainder of days to calc hours
minutes = divmod(hours[1], 60) # Use remainder of hours to calc minutes
seconds = divmod(minutes[1], 1) # Use remainder of minutes to calc seconds
date_now = datetime.datetime.now(pytz.timezone('Asia/Dubai'))
print(f'\n\nTime & Date = {date_now.strftime("%I:%M %p")} , {date_now.strftime("%d_%b_%Y")} GST')
print(f"\nTotal Time => {int(days[0])} Hours : {int(minutes[0])} Minutes : {int(seconds[0])} Seconds\n\n")
return result
return wrapper
############################################################################################################
# Logging Functions
############################################################################################################
# Define a Tee class to duplicate output to both stdout and a log file
class Tee:
def __init__(self, *files):
self.files = files
def write(self, text):
for file in self.files:
file.write(text)
file.flush()
def flush(self):
for file in self.files:
file.flush()
# Define a function to redirect stdout and stderr to a log file
def redirect_output_to_log(log_file):
# Open the log file in append mode
log = open(log_file, 'a')
# Duplicate stdout and stderr
sys.stdout = Tee(sys.stdout, log)
sys.stderr = Tee(sys.stderr, log)
return log
# Define a function to setup logging
def setup_logging(args):
log_dir = os.path.join('logs', args.model_name) # log file dir
args.log_dir = log_dir
if args.do_logging:
if not os.path.exists(log_dir): os.makedirs(log_dir)
log_file_path = os.path.join(log_dir, f"{args.exp_name+'-SEED'+str(args.seed)}.log")
if os.path.exists(log_file_path): os.remove(log_file_path)
json_file_path = os.path.join(log_dir, f"{args.exp_name}.json")
args.json_file_path = json_file_path
print(f"\nLogging to '{log_file_path}'\n")
log_file = redirect_output_to_log(log_file_path) # redirect terminal output to log file
else:
log_file =None
return log_file