-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_manager.py
338 lines (264 loc) · 10.3 KB
/
data_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import torch
import torchvision.transforms as T
from tabulate import tabulate
from torch.utils.data import Dataset as TorchDataset
from dassl.utils import read_image
from .datasets import build_dataset
from .samplers import build_sampler
from .transforms import INTERPOLATION_MODES, build_transform
import numpy as np
import copy
# import cupy as cp
from PIL import Image, ImageFont, ImageDraw
import os
import copy
from copy import deepcopy
import random
import numpy as np
import PIL
from PIL import Image
from torchvision.transforms import functional as F
import torch.nn as nn
from torchvision.transforms import Compose
def build_data_loader(
cfg,
sampler_type="SequentialSampler",
data_source=None,
batch_size=64,
n_domain=0,
n_ins=2,
tfm=None,
is_train=True,
dataset_wrapper=None
):
# Build sampler
sampler = build_sampler(
sampler_type,
cfg=cfg,
data_source=data_source,
batch_size=batch_size,
n_domain=n_domain,
n_ins=n_ins
)
if dataset_wrapper is None:
dataset_wrapper = DatasetWrapper
# Build data loader
data_loader = torch.utils.data.DataLoader(
dataset_wrapper(cfg, data_source, transform=tfm, is_train=is_train),
batch_size=batch_size,
sampler=sampler,
num_workers=cfg.DATALOADER.NUM_WORKERS,
drop_last=is_train and len(data_source) >= batch_size,
pin_memory=(torch.cuda.is_available() and cfg.USE_CUDA)
)
assert len(data_loader) > 0
return data_loader
class DataManager:
def __init__(
self,
cfg,
custom_tfm_train=None,
custom_tfm_test=None,
dataset_wrapper=None
):
# Load dataset
dataset = build_dataset(cfg)
# Build transform
if custom_tfm_train is None:
tfm_train = build_transform(cfg, is_train=True)
else:
print("* Using custom transform for training")
tfm_train = custom_tfm_train
if custom_tfm_test is None:
tfm_test = build_transform(cfg, is_train=False)
else:
print("* Using custom transform for testing")
tfm_test = custom_tfm_test
# Build train_loader_x
train_loader_x = build_data_loader(
cfg,
sampler_type=cfg.DATALOADER.TRAIN_X.SAMPLER,
data_source=dataset.train_x,
batch_size=cfg.DATALOADER.TRAIN_X.BATCH_SIZE,
n_domain=cfg.DATALOADER.TRAIN_X.N_DOMAIN,
n_ins=cfg.DATALOADER.TRAIN_X.N_INS,
tfm=tfm_train,
is_train=True,
dataset_wrapper=dataset_wrapper
)
# Build train_loader_u
train_loader_u = None
if dataset.train_u:
sampler_type_ = cfg.DATALOADER.TRAIN_U.SAMPLER
batch_size_ = cfg.DATALOADER.TRAIN_U.BATCH_SIZE
n_domain_ = cfg.DATALOADER.TRAIN_U.N_DOMAIN
n_ins_ = cfg.DATALOADER.TRAIN_U.N_INS
if cfg.DATALOADER.TRAIN_U.SAME_AS_X:
sampler_type_ = cfg.DATALOADER.TRAIN_X.SAMPLER
batch_size_ = cfg.DATALOADER.TRAIN_X.BATCH_SIZE
n_domain_ = cfg.DATALOADER.TRAIN_X.N_DOMAIN
n_ins_ = cfg.DATALOADER.TRAIN_X.N_INS
train_loader_u = build_data_loader(
cfg,
sampler_type=sampler_type_,
data_source=dataset.train_u,
batch_size=batch_size_,
n_domain=n_domain_,
n_ins=n_ins_,
tfm=tfm_train,
is_train=True,
dataset_wrapper=dataset_wrapper
)
# Build val_loader
val_loader = None
if dataset.val:
val_loader = build_data_loader(
cfg,
sampler_type=cfg.DATALOADER.TEST.SAMPLER,
data_source=dataset.val,
batch_size=cfg.DATALOADER.TEST.BATCH_SIZE,
tfm=tfm_test,
is_train=False,
dataset_wrapper=dataset_wrapper
)
# Build test_loader
test_loader = build_data_loader(
cfg,
sampler_type=cfg.DATALOADER.TEST.SAMPLER,
data_source=dataset.test,
batch_size=cfg.DATALOADER.TEST.BATCH_SIZE,
tfm=tfm_test,
is_train=False,
dataset_wrapper=dataset_wrapper
)
# Attributes
self._num_classes = dataset.num_classes
self._num_source_domains = len(cfg.DATASET.SOURCE_DOMAINS)
self._lab2cname = dataset.lab2cname
# Dataset and data-loaders
self.dataset = dataset
self.train_loader_x = train_loader_x
self.train_loader_u = train_loader_u
self.val_loader = val_loader
self.test_loader = test_loader
# self.val_loader.dataset.trigger = self.train_loader_x.dataset.trigger
# self.test_loader.dataset.trigger = self.train_loader_x.dataset.trigger
self.val_loader.dataset.backdoor_label = self.train_loader_x.dataset.backdoor_label
self.test_loader.dataset.backdoor_label = self.train_loader_x.dataset.backdoor_label
if cfg.VERBOSE:
self.show_dataset_summary(cfg)
@property
def num_classes(self):
return self._num_classes
@property
def num_source_domains(self):
return self._num_source_domains
@property
def lab2cname(self):
return self._lab2cname
def show_dataset_summary(self, cfg):
dataset_name = cfg.DATASET.NAME
source_domains = cfg.DATASET.SOURCE_DOMAINS
target_domains = cfg.DATASET.TARGET_DOMAINS
table = []
table.append(["Dataset", dataset_name])
if source_domains:
table.append(["Source", source_domains])
if target_domains:
table.append(["Target", target_domains])
table.append(["# classes", f"{self.num_classes:,}"])
table.append(["# train_x", f"{len(self.dataset.train_x):,}"])
if self.dataset.train_u:
table.append(["# train_u", f"{len(self.dataset.train_u):,}"])
if self.dataset.val:
table.append(["# val", f"{len(self.dataset.val):,}"])
table.append(["# test", f"{len(self.dataset.test):,}"])
table.append(["Class Names", self.lab2cname])
print(tabulate(table))
class DatasetWrapper(TorchDataset):
def __init__(self, cfg, data_source, transform=None, is_train=False):
self.cfg = cfg
self.data_source = data_source
self.transform = transform # accept list (tuple) as input
self.is_train = is_train
# Augmenting an image K>1 times is only allowed during training
self.k_tfm = cfg.DATALOADER.K_TRANSFORMS if is_train else 1
self.return_img0 = cfg.DATALOADER.RETURN_IMG0
if self.k_tfm > 1 and transform is None:
raise ValueError(
"Cannot augment the image {} times "
"because transform is None".format(self.k_tfm)
)
# Build transform that doesn't apply any data augmentation
interp_mode = INTERPOLATION_MODES[cfg.INPUT.INTERPOLATION]
to_tensor = []
to_tensor += [T.Resize(cfg.INPUT.SIZE, interpolation=interp_mode)]
to_tensor += [T.ToTensor()]
if "normalize" in cfg.INPUT.TRANSFORMS:
normalize = T.Normalize(
mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD
)
to_tensor += [normalize]
self.to_tensor = T.Compose(to_tensor)
self.normalize = T.Normalize(mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD)
self.backdoor_label = cfg.BACKDOOR.TARGET_CLASS
self.backdoor_percentage = cfg.BACKDOOR.POISON_PERCENTAGE
self.num_samples = len(self.data_source)
self.indices = np.arange(self.num_samples)
num_backdoor_samples = int(self.num_samples * (self.backdoor_percentage/100))
if is_train:
# self.backdoor_tags = torch.zeros(self.num_samples, dtype=torch.int64)
# rand_indices = torch.randperm(self.num_samples)[:num_backdoor_samples]
# self.backdoor_tags[rand_indices] = 1
self.backdoor_tags = torch.from_numpy(np.random.choice([0, 1], size=(self.num_samples,), p=[1-(self.backdoor_percentage/100),self.backdoor_percentage/100]))
else:
self.backdoor_tags = torch.zeros(self.num_samples)
# self.backdoor_tags = torch.ones(self.num_samples)
print("\n\n\n#############################################")
print(f"IS_TRAIN={is_train}")
print(f"BACKDOOR_PERCENTAGE = {self.backdoor_percentage} %")
print(f"BACKDOOR LABEL = {self.backdoor_label}")
print(f"Number of Samples = {self.num_samples}")
print(f"Number of Backdoor Samples = {num_backdoor_samples}")
print("#############################################\n\n\n")
def __len__(self):
return len(self.data_source)
def __getitem__(self, idx):
item = self.data_source[idx]
output = {
"label": item.label,
"domain": item.domain,
"impath": item.impath,
"index": idx
}
img0 = read_image(item.impath)
if self.transform is not None:
if isinstance(self.transform, (list, tuple)):
for i, tfm in enumerate(self.transform):
img = self._transform_image(tfm, img0)
keyname = "img"
if (i + 1) > 1:
keyname += str(i + 1)
output[keyname] = img
else:
img = self._transform_image(self.transform, img0)
output["img"] = img
else:
output["img"] = img0
if self.return_img0:
output["img0"] = self.to_tensor(img0) # without any augmentation
backdoor_tag = self.backdoor_tags[idx].item()
if backdoor_tag == 1:
output["label"] = self.backdoor_label
output["backdoor_tag"] = 1
else:
output["backdoor_tag"] = 0
return output
def _transform_image(self, tfm, img0):
img_list = []
for k in range(self.k_tfm):
img_list.append(tfm(img0))
img = img_list
if len(img) == 1:
img = img[0]
return img