-
Notifications
You must be signed in to change notification settings - Fork 5
/
crf_math_1.py
441 lines (347 loc) · 15.9 KB
/
crf_math_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
from __future__ import division
from collections import namedtuple
import numpy as np
from numpy import random as rng
from scipy.linalg import cho_factor, cho_solve, LinAlgError
from sklearn.base import BaseEstimator
from progressbar import ProgressBar
from copy import deepcopy
def soft_thresh(r, w):
return np.sign(w) * np.max(np.abs(w)-r, 0)
def check_pd(A, lower=True):
"""
Checks if A is PD.
If so returns True and Cholesky decomposition,
otherwise returns False and None
"""
try:
return True, np.tril(cho_factor(A, lower=lower)[0])
except LinAlgError as err:
if 'not positive definite' in str(err):
return False, None
def chol_inv(B, lower=True):
"""
Returns the inverse of matrix A, where A = B*B.T,
ie B is the Cholesky decomposition of A.
Solves Ax = I
given B is the cholesky factorization of A.
"""
return cho_solve((B, lower), np.eye(B.shape[0]))
def inv(A):
"""
Inversion of a SPD matrix using Cholesky decomposition.
"""
return chol_inv(check_pd(A)[1])
def log(x):
return np.log(x) if x > 0 else -np.inf
class SparseGaussianCRF(BaseEstimator):
"""
GCRF models conditional probability density of y in R^q given x in R^p as
p(y|x, Λ, Θ) = exp(-y' * Λ * y - 2 * x' * Θ * y) / Z(x)
where Z(x) = c * |Λ|^-1 * exp(x' * Θ * Λ^-1 * Θ' * x)
This is equivalent to:
p(y|x) = N(-Θ * Λ^-1 * x, Λ^-1)
Parameters
----------
learning_rate : float, default 1.0
step size
lamL : float, default 0.01
l1 regularization for the Λ matrix
lamT : float, default 0.01
l1 regularization for the Θ matrix
References
----------
Wytock and Kolter 2013
Probabilistic Forecasting using Sparse Gaussian CRFs
http://www.zicokolter.com/wp-content/uploads/2015/10/wytock-cdc13.pdf
Wytock and Kolter 2013
Sparse Gaussian CRFs Algorithms Theory and Application
https://www.cs.cmu.edu/~mwytock/papers/gcrf_full.pdf
McCarter and Kim 2015
Large-Scale Optimization Algorithms for Sparse CGGMs
http://arxiv.org/pdf/1509.04681.pdf
McCarter and Kim 2016
On Sparse Gaussian Chain Graph Models
(info on Multi-Layer Sparse Gaussian CRFs)
http://papers.nips.cc/paper/5320-on-sparse-gaussian-chain-graph-models.pdf
Klinger and Tomanek 2007
Classical Probabilistic Models and Conditional Random Fields
http://www.scai.fraunhofer.de/fileadmin/images/bio/data_mining/paper/crf_klinger_tomanek.pdf
Tong Tong Wu and Kenneth Lange 2008
Coordinate Descent Algorithms for Lasso Penalized Regression
http://arxiv.org/pdf/0803.3876.pdf
"""
def __init__(self, learning_rate=1.0, lamL=1, lamT=1, n_iter=1000):
self.lamL = lamL
self.lamT = lamT
self.learning_rate = learning_rate
self.n_iter = n_iter
self.Lam = None
self.Theta = None
# stuff for line search
self.beta = 0.5
self.slack = 0.05
def fit(self, X, Y):
"""TODO: Docstring for fit.
Parameters
----------
X : np.array, shape (n_samples, input_dimension)
Y : np.array, shape (n_samples, output_dimension)
Returns
-------
TODO
"""
assert X.shape[0] == Y.shape[0], 'Inputs and Outputs must have the same number of observations'
self.alt_newton_coord_descent(X=X, Y=Y)
return self
def loss(self, X, Y, Lam=None, Theta=None):
if Lam is None:
Lam = self.Lam
if Theta is None:
Theta = self.Theta
n, p, q = self._problem_size(X, Y)
FixedParams = namedtuple('FixedParams', ['Sxx', 'Sxy', 'Syy'])
VariableParams = namedtuple('VariableParams', ['Sigma', 'Psi'])
fixed = FixedParams(Sxx=np.dot(X.T, X) / n,
Syy=np.dot(Y.T, Y) / n,
Sxy=np.dot(X.T, Y) / n)
Sigma = inv(Lam)
R = np.dot(np.dot(X, self.Theta), Sigma) / np.sqrt(n)
vary = VariableParams(Sigma=Sigma,
Psi=np.dot(R.T, R))
return self.l1_neg_log_likelihood(Lam, Theta, fixed, vary)
# def check_gradient(self, fixed, vary):
# grad_lam = np.zeros_like(self.Lam)
# grad_theta = np.zeros_like(self.Theta)
# for i in range(self.Lam.shape[0]):
# for j in range(self.Lam.shape[1]):
# L = self.Lam.copy()
# run = 1e-10
# L[i,j] += run
# rise = self.neg_log_likelihood(L, self.Theta, fixed, vary) - self.neg_log_likelihood(self.Lam, self.Theta, fixed, vary)
# grad_lam[i,j] = rise/run
#
# for i in range(self.Theta.shape[0]):
# for j in range(self.Theta.shape[1]):
# T = self.Theta.copy()
# run = 1e-10
# T[i,j] += run
# rise = self.neg_log_likelihood(self.Lam, T, fixed, vary) - self.neg_log_likelihood(self.Lam, self.Theta, fixed, vary)
# grad_theta[i,j] = rise/run
# return grad_lam, grad_theta
def neg_log_likelihood(self, Lam, Theta, fixed, vary):
"compute the negative log-likelihood of the GCRF"
return -log(np.linalg.det(Lam)) + \
np.trace(np.dot(fixed.Syy, Lam) + \
2*np.dot(fixed.Sxy.T, Theta) + \
np.dot(vary.Psi, Lam))
@staticmethod
def l1_norm_off_diag(A):
"convenience method for l1 norm, excluding diagonal"
# let's speed this up later
# assume A symmetric, sparse too
return np.linalg.norm(A - np.diag(A.diagonal()), ord=1)
def l1_neg_log_likelihood(self, Lam, Theta, fixed, vary):
"regluarized negative log likelihood"
return self.neg_log_likelihood( Lam, Theta, fixed, vary) + \
self.lamL * self.l1_norm_off_diag(Lam) + \
self.lamT * np.linalg.norm(Theta, ord=1)
def neg_log_likelihood_wrt_Lam(self, Lam, fixed, vary):
# compute the negative log-likelihood of the GCRF when Theta is fixed
return -log(np.linalg.det(Lam)) + \
np.trace(np.dot(fixed.Syy, Lam) + \
np.dot(vary.Psi, Lam))
def l1_neg_log_likelihood_wrt_Lam(self, Lam, fixed, vary):
# regularized neg log loss
return self.neg_log_likelihood_wrt_Lam(Lam, fixed, vary) + \
self.lamL * np.linalg.norm(Lam - np.diag(Lam.diagonal()), ord=1)
# def neg_log_likelihood_wrt_Theta(self, Theta, fixed, vary):
# # compute the negative log-likelihood of the GCRF when Lamba is fixed
# return 2*np.dot(fixed.Sxy.T, Theta) + np.dot(vary.Sigma, vary.Psi)
def grad_wrt_Lam(self, fixed, vary):
return fixed.Syy - vary.Sigma - vary.Psi
def grad_wrt_Theta(self, fixed, vary):
# TODO this is not avoiding the Gamma computation!!!
# gamma = Sxx Theta Sigma
return 2 * fixed.Sxy + 2 * np.dot(fixed.Sxx, np.dot(self.Theta, vary.Sigma))
def active_set(self, fixed, vary):
return (self.active_set_Lam(fixed, vary),
self.active_set_Theta(fixed, vary))
def active_set_Lam(self, fixed, vary):
grad = self.grad_wrt_Lam(fixed, vary)
assert np.allclose(grad, grad.T, 1e-3)
return np.where((np.abs(np.triu(grad)) > self.lamL) | (self.Lam != 0))
# return np.where((np.abs(grad) > self.lamL) | (~np.isclose(self.Lam, 0)))
def active_set_Theta(self, fixed, vary):
grad = self.grad_wrt_Theta(fixed, vary)
return np.where((np.abs(grad) > self.lamT) | (self.Theta != 0))
# return np.where((np.abs(grad) > self.lamT) | (~np.isclose(self.Theta, 0)))
def _problem_size(self, X, Y):
(n, p), q = X.shape, Y.shape[1]
return n, p, q
def check_descent(self, newton_lambda, alpha, fixed, vary):
# check if we have made suffcient descent
DLam = np.trace(np.dot(self.grad_wrt_Lam(fixed, vary), newton_lambda)) + \
self.lamL * np.linalg.norm(self.Lam + newton_lambda, ord=1) - \
self.lamL * np.linalg.norm(self.Lam, ord=1)
nll_a = self.l1_neg_log_likelihood_wrt_Lam(self.Lam + alpha * newton_lambda, fixed, vary)
nll_b = self.l1_neg_log_likelihood_wrt_Lam(self.Lam, fixed, vary) + alpha * self.slack * DLam
return nll_a <= nll_b
def check_descent2(self, newton_lambda, alpha, fixed, vary):
lhs = self.l1_neg_log_likelihood(self.Lam + alpha*newton_lambda, self.Theta, fixed, vary)
mu = np.trace(np.dot(self.grad_wrt_Lam(fixed, vary), newton_lambda)) + \
self.lamL*self.l1_norm_off_diag(self.Lam + newton_lambda) +\
self.lamT*np.linalg.norm(self.Theta, ord=1)
rhs = self.neg_log_likelihood(self.Lam, self.Theta, fixed, vary) +\
alpha * self.slack * mu
return lhs <= rhs
def line_search(self, newton_lambda, fixed, vary):
# returns cholesky decomposition of Lambda and the learning rate
alpha = self.learning_rate
while True:
pd, L = check_pd(self.Lam + alpha * newton_lambda)
if pd and self.check_descent(newton_lambda, alpha, fixed, vary):
# step is positive definite and we have sufficient descent
break
#TODO maybe want to return newt+alpha, to reuse computation
alpha = alpha * self.beta
# if alpha < 0.1:
# return L, alpha
return L, alpha
def lambda_newton_direction(self, active, fixed, vary, max_iter=1):
# TODO we should be able to do a warm start...
delta = np.zeros_like(vary.Sigma)
U = np.zeros_like(vary.Sigma)
for _ in range(max_iter):
for i, j in rng.permutation(np.array(active).T):
if i > j:
# seems ok since we look for upper triangular indices in active set
continue
if i==j:
a = vary.Sigma[i,i] ** 2 + 2 * vary.Sigma[i,i] * vary.Psi[i,i]
else:
a = (vary.Sigma[i, j] ** 2 + vary.Sigma[i, i] * vary.Sigma[j, j] +
vary.Sigma[i, i] * vary.Psi[j, j] + 2 * vary.Sigma[i, j] * vary.Psi[i, j] +
vary.Sigma[j, j] * vary.Psi[i, i])
b = (fixed.Syy[i, j] - vary.Sigma[i, j] - vary.Psi[i, j] +
np.dot(vary.Sigma[i,:], U[:,j]) +
np.dot(vary.Psi[i,:], U[:,j]) +
np.dot(vary.Psi[j,:], U[:,i]))
if i==j:
u = -b/a
delta[i, i] += u
U[i, :] += u * vary.Sigma[i, :]
else:
c = self.Lam[i, j] + delta[i, j]
u = soft_thresh(self.lamL / a, c - b/a) - c
delta[j, i] += u
delta[i, j] += u
U[j, :] += u * vary.Sigma[i, :]
U[i, :] += u * vary.Sigma[j, :]
return delta
def theta_coordinate_descent(self, active, fixed, vary, max_iter=1):
V = np.dot(self.Theta, vary.Sigma)
for _ in range(max_iter):
for i, j in np.array(active).T:
a = 2 * vary.Sigma[j, j] * fixed.Sxx[i, i]
b = 2 * fixed.Sxy[i, j] + 2 * np.dot(fixed.Sxx[i,:], V[:,j])
c = self.Theta[i, j]
u = soft_thresh(self.lamT / a, c - b/a) - c
self.Theta[i, j] += u
V[i,:] += u * vary.Sigma[j,:]
return self.Theta
def alt_newton_coord_descent(self, X, Y):
"""
JK Trying to follow Calvin's algorithm, then will merge back into orig
"""
n, p, q = self._problem_size(X, Y)
FixedParams = namedtuple('FixedParams', ['Sxx', 'Sxy', 'Syy'])
VariableParams = namedtuple('VariableParams', ['Sigma', 'Psi'])
fixed = FixedParams(Sxx=np.dot(X.T, X) / n,
Syy=np.dot(Y.T, Y) / n,
Sxy=np.dot(X.T, Y) / n)
# allow for continued fitting
if self.Lam is None:
self.Lam = np.eye(q)
Sigma = np.eye(q)
else:
Sigma = inv(self.Lam) # use cholesky decomp then solve system of eqs
if self.Theta is None:
self.Theta = np.zeros((p, q))
self.nll = []
self.lnll = []
self.lrs = []
from progressbar import ProgressBar
pbar = ProgressBar()
for it in pbar(range(self.n_iter)):
# update variable params
R = np.dot(np.dot(X, self.Theta), Sigma) / np.sqrt(n)
vary = VariableParams(Sigma=Sigma,
Psi=np.dot(R.T, R))
self.nll.append(self.neg_log_likelihood(self.Lam, self.Theta, fixed, vary))
self.lnll.append(self.l1_neg_log_likelihood(self.Lam, self.Theta, fixed, vary))
# determine active set
active_Lam = self.active_set_Lam(fixed, vary)
# solve D_lambda via coordinate descent
newton_lambda = self.lambda_newton_direction(active_Lam, fixed, vary, max_iter=1)
# line search for best step size
learning_rate = self.learning_rate
LL, learning_rate = self.line_search(newton_lambda, fixed, vary)
self.lrs.append(learning_rate)
self.Lam = self.Lam.copy() + learning_rate * newton_lambda
# update variable params
Sigma = chol_inv(LL) # use chol decomp from the backtracking
vary = VariableParams(Sigma=Sigma,
Psi=None) # dont need psi here
# determine active set
active_Theta = self.active_set_Theta(fixed, vary)
# solve theta
self.Theta = self.theta_coordinate_descent(active_Theta, fixed, vary, max_iter=1)
def sample(self, X, n=1, verbose=True):
"""
Draw samples from the conditional probability for y given x.
Inference in GCRF given by:
y|x ~ N(-Θ * Λ^-1 * x, Λ^-1)
This algorithm uses some clever accelerations to generate samples.
Inspired by Calvin McCarter[1].
The idea is to make the desired number of draws from a white multivariate
normal distribution, and then multiply these draws by the cholesky
decomposition of the desired covariance matrix. This adds the necessary
color to the original draws.
An equivalent thing to do is to multiply the white draws by the inverse of the
cholesky decompostition of the desired precision matrix:
If S is the desired covariance matrix and L, the precision matrix then:
S = SL * SL.T # cholesky decomposition
L = LL * LL.T # cholesky decomposition
S = L^-1 # by asssumption, then
SL * SL.T = (LL * LL.T)^-1 = LL.T ^-1 * LL ^-1
Although SL != LL.T^-1, the effective coloring is the same.
A final acceleration is to solve linear systems of equations instead of
explicitly computing matrix inversions.
[1] https://calvinmccarter.wordpress.com/2015/01/06/multivariate-normal-random-number-generation-in-matlab/
"""
LL = np.linalg.cholesky(self.Lam)
Sigma = chol_inv(LL)
means = -np.dot(np.dot(Sigma, self.Theta.T), X.T)
means = np.tile(np.atleast_2d(means), n)
N = means.shape[1]
z = rng.randn(self.Lam.shape[0], N)
samples = np.linalg.solve(LL.T, z) + means
return samples.squeeze().T
def predict(self, X, Y=None):
"""
Return the mean of y given x.
Inference in GCRF given by:
y|x ~ N(-Θ * Λ^-1 * x, Λ^-1)
so this method returns:
-Θ * Λ^-1 * x
"""
return -np.dot(np.dot(inv(self.Lam), self.Theta.T), X.T).T
def get_params(self, deep=True):
return {'lamL': self.lamL,
'lamT': self.lamT,
'learning_rate': self.learning_rate,
'n_iter': self.n_iter}
def set_params(self, **parameters):
for parameter, value in parameters.items():
self.setattr(parameter, value)