-
Notifications
You must be signed in to change notification settings - Fork 0
/
makMahony.cpp
397 lines (344 loc) · 20.9 KB
/
makMahony.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
#include "makMahony.h"
#include <Arduino.h>
void MAKMAHONY::MAKMAHONY_begin()
{
Wire.begin();
Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation difficulties
// Self Test
MPU6050SelfTest(SelfTest);
// Calibrate MPU6050
//calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
// Initialize MPU6050
MPU6050_Init();
// Configure LED for output
pinMode(LED_PIN, OUTPUT);
// Sampling Timer
sampling_timer = micros();
}
void MAKMAHONY::Serial_roll_pitch_yaw(float &r, float &p, float &y)
{
// Get raw data
mpu6050_GetData();
// Update raw data to Quaternion form
mpu6050_updateQuaternion();
Now = micros();
sampleFreq = (1000000.0f / (Now - lastUpdate)); // set integration time by time elapsed since last filter update
lastUpdate = Now;
//compute data
MahonyAHRSupdateIMU(gxrs, gyrs, gzrs, axg, ayg, azg);
// Value of Roll, Pitch, Yaw
mpu6050_getRollPitchYaw();
// Print Roll, Pitch, Yaw to Serial Monitor
r=roll;
p=pitch;
y=yaw;
// Sampling Timer
//while(micros() - sampling_timer < 3950); //
//sampling_timer = micros(); //Reset the sampling timer
// Blink LED to indicate activity
blinkState = !blinkState;
digitalWrite(LED_PIN, blinkState);
}
void MAKMAHONY::MPU6050_Init(){
// MPU6050 Initializing & Reset
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_PWR_MGMT_1, 0x00); // set to zero (wakes up the MPU-6050)
// MPU6050 Clock Type
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_PWR_MGMT_1, 0x01); // Selection Clock 'PLL with X axis gyroscope reference'
// MPU6050 Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) for DMP
//writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_SMPLRT_DIV, 0x00); // Default is 1KHz // example 0x04 is 200Hz
// MPU6050 Gyroscope Configuration Setting
/* Wire.write(0x00); // FS_SEL=0, Full Scale Range = +/- 250 [degree/sec]
Wire.write(0x08); // FS_SEL=1, Full Scale Range = +/- 500 [degree/sec]
Wire.write(0x10); // FS_SEL=2, Full Scale Range = +/- 1000 [degree/sec]
Wire.write(0x18); // FS_SEL=3, Full Scale Range = +/- 2000 [degree/sec] */
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_GYRO_CONFIG, 0x18); // FS_SEL=3
// MPU6050 Accelerometer Configuration Setting
/* Wire.write(0x00); // AFS_SEL=0, Full Scale Range = +/- 2 [g]
Wire.write(0x08); // AFS_SEL=1, Full Scale Range = +/- 4 [g]
Wire.write(0x10); // AFS_SEL=2, Full Scale Range = +/- 8 [g]
Wire.write(0x18); // AFS_SEL=3, Full Scale Range = +/- 10 [g] */
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ACCEL_CONFIG, 0x10); // AFS_SEL=2
// MPU6050 DLPF(Digital Low Pass Filter)
/*Wire.write(0x00); // Accel BW 260Hz, Delay 0ms / Gyro BW 256Hz, Delay 0.98ms, Fs 8KHz
Wire.write(0x01); // Accel BW 184Hz, Delay 2ms / Gyro BW 188Hz, Delay 1.9ms, Fs 1KHz
Wire.write(0x02); // Accel BW 94Hz, Delay 3ms / Gyro BW 98Hz, Delay 2.8ms, Fs 1KHz
Wire.write(0x03); // Accel BW 44Hz, Delay 4.9ms / Gyro BW 42Hz, Delay 4.8ms, Fs 1KHz
Wire.write(0x04); // Accel BW 21Hz, Delay 8.5ms / Gyro BW 20Hz, Delay 8.3ms, Fs 1KHz
Wire.write(0x05); // Accel BW 10Hz, Delay 13.8ms / Gyro BW 10Hz, Delay 13.4ms, Fs 1KHz
Wire.write(0x06); // Accel BW 5Hz, Delay 19ms / Gyro BW 5Hz, Delay 18.6ms, Fs 1KHz */
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_CONFIG, 0x00); //Accel BW 260Hz, Delay 0ms / Gyro BW 256Hz, Delay 0.98ms, Fs 8KHz
}
void MAKMAHONY::mpu6050_GetData() {
uint8_t data_org[14]; // original data of accelerometer and gyro
readBytes(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ACCEL_XOUT_H, 14, &data_org[0]);
AcX = data_org[0] << 8 | data_org[1]; // 0x3B (ACCEL_XOUT_H) & 0x3C (ACCEL_XOUT_L)
AcY = data_org[2] << 8 | data_org[3]; // 0x3D (ACCEL_YOUT_H) & 0x3E (ACCEL_YOUT_L)
AcZ = data_org[4] << 8 | data_org[5]; // 0x3F (ACCEL_ZOUT_H) & 0x40 (ACCEL_ZOUT_L)
Tmp = data_org[6] << 8 | data_org[7]; // 0x41 (TEMP_OUT_H) & 0x42 (TEMP_OUT_L)
GyX = data_org[8] << 8 | data_org[9]; // 0x43 (GYRO_XOUT_H) & 0x44 (GYRO_XOUT_L)
GyY = data_org[10] << 8 | data_org[11]; // 0x45 (GYRO_YOUT_H) & 0x46 (GYRO_YOUT_L)
GyZ = data_org[12] << 8 | data_org[13]; // 0x47 (GYRO_ZOUT_H) & 0x48 (GYRO_ZOUT_L)
}
void MAKMAHONY::mpu6050_updateQuaternion() {
axg = (float)(AcX - MPU6050_AXOFFSET) / MPU6050_AXGAIN;
ayg = (float)(AcY - MPU6050_AYOFFSET) / MPU6050_AYGAIN;
azg = (float)(AcZ - MPU6050_AZOFFSET) / MPU6050_AZGAIN;
gxrs = (float)(GyX - MPU6050_GXOFFSET) / MPU6050_GXGAIN * 0.01745329; //degree to radians
gyrs = (float)(GyY - MPU6050_GYOFFSET) / MPU6050_GYGAIN * 0.01745329; //degree to radians
gzrs = (float)(GyZ - MPU6050_GZOFFSET) / MPU6050_GZGAIN * 0.01745329; //degree to radians
// Degree to Radians Pi / 180 = 0.01745329 0.01745329251994329576923690768489
}
void MAKMAHONY::MahonyAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az) {
float norm;
float halfvx, halfvy, halfvz;
float halfex, halfey, halfez;
float qa, qb, qc;
// Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
// Normalise accelerometer measurement
norm = sqrt(ax * ax + ay * ay + az * az);
ax /= norm;
ay /= norm;
az /= norm;
// Estimated direction of gravity and vector perpendicular to magnetic flux
halfvx = q1 * q3 - q0 * q2;
halfvy = q0 * q1 + q2 * q3;
halfvz = q0 * q0 - 0.5f + q3 * q3;
// Error is sum of cross product between estimated and measured direction of gravity
halfex = (ay * halfvz - az * halfvy);
halfey = (az * halfvx - ax * halfvz);
halfez = (ax * halfvy - ay * halfvx);
// Compute and apply integral feedback if enabled
if(twoKi > 0.0f) {
integralFBx += twoKi * halfex * (1.0f / sampleFreq); // integral error scaled by Ki
integralFBy += twoKi * halfey * (1.0f / sampleFreq);
integralFBz += twoKi * halfez * (1.0f / sampleFreq);
gx += integralFBx; // apply integral feedback
gy += integralFBy;
gz += integralFBz;
}
else {
integralFBx = 0.0f; // prevent integral windup
integralFBy = 0.0f;
integralFBz = 0.0f;
}
// Apply proportional feedback
gx += twoKp * halfex;
gy += twoKp * halfey;
gz += twoKp * halfez;
}
// Integrate rate of change of quaternion
gx *= (0.5f * (1.0f / sampleFreq)); // pre-multiply common factors
gy *= (0.5f * (1.0f / sampleFreq));
gz *= (0.5f * (1.0f / sampleFreq));
qa = q0;
qb = q1;
qc = q2;
q0 += (-qb * gx - qc * gy - q3 * gz);
q1 += (qa * gx + qc * gz - q3 * gy);
q2 += (qa * gy - qb * gz + q3 * gx);
q3 += (qa * gz + qb * gy - qc * gx);
// Normalise quaternion
norm = sqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
q0 /= norm;
q1 /= norm;
q2 /= norm;
q3 /= norm;
}
void MAKMAHONY::mpu6050_getRollPitchYaw() {
// yaw = atan2(2*q1*q2 - 2*q0*q3, 2*q0*q0 + 2*q1*q1 - 1) * 57.29577951;
// pitch = -asin(2*q1*q3 + 2*q0*q2) * 57.29577951;
// roll = atan2(2*q2*q3 - 2*q0*q1, 2*q0*q0 + 2*q3*q3 - 1) * 57.29577951;
// roll = atan2(2*q0*q1 + 2*q2*q3, 1 - 2*q1*q1 - 2*q2*q2) * 57.29577951;
// pitch = asin(2*q0*q2 - 2*q3*q1) * 57.29577951;
// yaw = atan2(2*q0*q3 + 2*q1*q2, 1 - 2*q2*q2 - 2*q3*q3) * 57.29577951;
yaw = -atan2(2.0f * (q1 * q2 + q0 * q3), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3) * 57.29577951;
pitch = asin(2.0f * (q1 * q3 - q0 * q2)) * 57.29577951;
roll = atan2(2.0f * (q0 * q1 + q2 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3) * 57.29577951;
}
void MAKMAHONY::writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
{
Wire.beginTransmission(address); // Initialize the Tx buffer
Wire.write(subAddress); // Put slave register address in Tx buffer
Wire.write(data); // Put data in Tx buffer
Wire.endTransmission(); // Send the Tx buffer
}
void MAKMAHONY::MPU6050SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
{
uint8_t rawData[4];
uint8_t selfTest[6];
float factoryTrim[6];
// Configure the accelerometer for self-test
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
delay(250); // Delay a while to let the device execute the self-test
rawData[0] = readByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_SELF_TEST_X); // X-axis self-test results
rawData[1] = readByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_SELF_TEST_Y); // Y-axis self-test results
rawData[2] = readByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_SELF_TEST_Z); // Z-axis self-test results
rawData[3] = readByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_SELF_TEST_A); // Mixed-axis self-test results
// Extract the acceleration test results first
selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer
selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 2 ; // YA_TEST result is a five-bit unsigned integer
selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) ; // ZA_TEST result is a five-bit unsigned integer
// Extract the gyration test results first
selfTest[3] = rawData[0] & 0x1F ; // XG_TEST result is a five-bit unsigned integer
selfTest[4] = rawData[1] & 0x1F ; // YG_TEST result is a five-bit unsigned integer
selfTest[5] = rawData[2] & 0x1F ; // ZG_TEST result is a five-bit unsigned integer
// Process results to allow final comparison with factory set values
factoryTrim[0] = (4096.0*0.34)*(pow( (0.92/0.34) , (((float)selfTest[0] - 1.0)/30.0))); // FT[Xa] factory trim calculation
factoryTrim[1] = (4096.0*0.34)*(pow( (0.92/0.34) , (((float)selfTest[1] - 1.0)/30.0))); // FT[Ya] factory trim calculation
factoryTrim[2] = (4096.0*0.34)*(pow( (0.92/0.34) , (((float)selfTest[2] - 1.0)/30.0))); // FT[Za] factory trim calculation
factoryTrim[3] = ( 25.0*131.0)*(pow( 1.046 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
factoryTrim[4] = (-25.0*131.0)*(pow( 1.046 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
factoryTrim[5] = ( 25.0*131.0)*(pow( 1.046 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
// Output self-test results and factory trim calculation if desired
// Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]);
// Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]);
// Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]);
// Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]);
// Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
// To get to percent, must multiply by 100 and subtract result from 100
for (int i = 0; i < 6; i++) {
destination[i] = 100.0 + 100.0*((float)selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences
}
}
void MAKMAHONY::calibrateMPU6050(float * dest1, float * dest2)
{
uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
uint16_t ii, packet_count, fifo_count;
int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
// reset device, reset all registers, clear gyro and accelerometer bias registers
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
delay(100);
// get stable time source
// Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_PWR_MGMT_1, 0x01);
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_PWR_MGMT_2, 0x00);
delay(200);
// Configure device for bias calculation
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_INT_ENABLE, 0x00); // Disable all interrupts
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_FIFO_EN, 0x00); // Disable FIFO
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_PWR_MGMT_1, 0x00); // Turn on internal clock source
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_I2C_MST_CTRL, 0x00); // Disable I2C master
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_USER_CTRL, 0x00); // Disable FIFO and I2C master modes
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_USER_CTRL, 0x0C); // Reset FIFO and DMP
delay(15);
// Configure MPU6050 gyro and accelerometer for bias calculation
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_CONFIG, 0x01); // Set low-pass filter to 188 Hz
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
uint16_t accelsensitivity = 16384; // = 16384 LSB/g
// Configure FIFO to capture accelerometer and gyro data for bias calculation
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_USER_CTRL, 0x40); // Enable FIFO
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 1024 bytes in MPU-6050)
delay(80); // accumulate 80 samples in 80 milliseconds = 960 bytes
// At end of sample accumulation, turn off FIFO sensor read
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
readBytes(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
fifo_count = ((uint16_t)data[0] << 8) | data[1];
packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
for (ii = 0; ii < packet_count; ii++) {
int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
readBytes(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_FIFO_R_W, 12, &data[0]); // read data for averaging
accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
accel_bias[1] += (int32_t) accel_temp[1];
accel_bias[2] += (int32_t) accel_temp[2];
gyro_bias[0] += (int32_t) gyro_temp[0];
gyro_bias[1] += (int32_t) gyro_temp[1];
gyro_bias[2] += (int32_t) gyro_temp[2];
}
accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
accel_bias[1] /= (int32_t) packet_count;
accel_bias[2] /= (int32_t) packet_count;
gyro_bias[0] /= (int32_t) packet_count;
gyro_bias[1] /= (int32_t) packet_count;
gyro_bias[2] /= (int32_t) packet_count;
if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
else {accel_bias[2] += (int32_t) accelsensitivity;}
// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
data[3] = (-gyro_bias[1]/4) & 0xFF;
data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
data[5] = (-gyro_bias[2]/4) & 0xFF;
// Push gyro biases to hardware registers
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_XG_OFFS_USRH, data[0]);// might not be supported in MPU6050
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_XG_OFFS_USRL, data[1]);
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_YG_OFFS_USRH, data[2]);
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_YG_OFFS_USRL, data[3]);
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ZG_OFFS_USRH, data[4]);
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ZG_OFFS_USRL, data[5]);
dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
// the accelerometer biases calculated above must be divided by 8.
int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
readBytes(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_XA_OFFS_H, 2, &data[0]); // Read factory accelerometer trim values
accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
readBytes(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_YA_OFFS_H, 2, &data[0]);
accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
readBytes(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ZA_OFFS_H, 2, &data[0]);
accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
for(ii = 0; ii < 3; ii++) {
if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
}
// Construct total accelerometer bias, including calculated average accelerometer bias from above
accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
accel_bias_reg[1] -= (accel_bias[1]/8);
accel_bias_reg[2] -= (accel_bias[2]/8);
data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
data[1] = (accel_bias_reg[0]) & 0xFF;
data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
data[3] = (accel_bias_reg[1]) & 0xFF;
data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
data[5] = (accel_bias_reg[2]) & 0xFF;
data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
// Push accelerometer biases to hardware registers
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_XA_OFFS_H, data[0]); // might not be supported in MPU6050
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_XA_OFFS_L_TC, data[1]);
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_YA_OFFS_H, data[2]);
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_YA_OFFS_L_TC, data[3]);
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ZA_OFFS_H, data[4]);
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ZA_OFFS_L_TC, data[5]);
// Output scaled accelerometer biases for manual subtraction in the main program
dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
}
uint8_t MAKMAHONY::readByte(uint8_t address, uint8_t subAddress)
{
uint8_t data; // `data` will store the register data
Wire.beginTransmission(address); // Initialize the Tx buffer
Wire.write(subAddress); // Put slave register address in Tx buffer
Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address
data = Wire.read(); // Fill Rx buffer with result
return data; // Return data read from slave register
}
void MAKMAHONY::readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
{
Wire.beginTransmission(address); // Initialize the Tx buffer
Wire.write(subAddress); // Put slave register address in Tx buffer
Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
uint8_t i = 0;
Wire.requestFrom(address, count); // Read bytes from slave register address
while (Wire.available()) {
dest[i++] = Wire.read(); } // Put read results in the Rx buffer
}