-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
384 lines (320 loc) · 15.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import os
import sys
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
# from imgaug import augmenters as iaa
import data_augmentation
import warnings
warnings.filterwarnings(action='ignore')
# Import mrcnn libraries
# sys.path.append(ROOT_DIR)
from mrcnn import utils
from mrcnn import visualize
import mrcnn.model as modellib
# Import configuration:
from CleanSeaConfig import CleanSeaConfig, InferenceConfig
from CleanSeaDataset import CleanSeaDataset
# Import argument parsing:
import argument_parsing
# Dictionary from instance to material level:
mapping_dictionary = {
# bottle, plastic_bag, glove, fishing_net, tire, plastic_debris, pipe -> plastic
'4' : 1,
'5' : 1,
'6' : 1,
'7' : 1,
'8' : 1,
'14' : 1,
'16' : 1,
# can, squared_can, wasingmachine, metal_chain, metal_debris, car_bumper -> metal
'1' : 2,
'2' : 2,
'10' : 2,
'11' : 2,
'15' : 2,
'18' : 2,
# wood -> wood
'3' : 3,
# packaging_bag -> paper
'9' : 4,
# rope, towel, shoe, basket -> other
'12' : 5,
'13' : 5,
'17' : 5,
'19' : 5,
}
""" Train process """
def train_process(args):
physical_devices = tf.config.list_physical_devices('GPU')
os.environ["CUDA_VISIBLE_DEVICES"]="0"
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
# tf.config.experimental.set_memory_growth(physical_devices[0], True)
# Directorio perteneciente a MASK-RCNN
ROOT_DIR = './'
MODEL_DIR = os.path.join(ROOT_DIR, "Models")
# Creating path to models:
# Creating path to models:
if not os.path.exists(MODEL_DIR):
os.makedirs(MODEL_DIR)
# Path to weights file:
# Path to weights file:
COCO_WEIGHTS_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
# Downloading pre-trained COCO weights:
# Downloading pre-trained COCO weights:
if not os.path.exists(COCO_WEIGHTS_PATH):
utils.download_trained_weights(COCO_WEIGHTS_PATH)
# Loading RCNN train configuration:
config = CleanSeaConfig()
config.display()
"""Train the model."""
# Train partition:
# Train partition:
dataset_train = CleanSeaDataset()
print("--- Train configuration ---")
# Selecting either real or synthetic train data:
if args.train_db == 'real':
dataset_train.load_data("./CocoFormatDataset", "train_coco", size_perc = args.size_perc, fill_size_perc = args.fill_size_perc, filling_set = args.fill_db, limit_train = args.limit_train)
else:
dataset_train.load_data("./SynthSet", "train_coco", size_perc = args.size_perc)
print("\t- Done loading data!")
# Preparing data:
print("--- Train configuration ---")
# Selecting either real or synthetic train data:
if args.train_db == 'real':
dataset_train.load_data("./CocoFormatDataset", "train_coco", size_perc = args.size_perc, fill_size_perc = args.fill_size_perc, filling_set = args.fill_db, limit_train = args.limit_train)
else:
dataset_train.load_data("./SynthSet", "train_coco", size_perc = args.size_perc)
print("\t- Done loading data!")
# Preparing data:
dataset_train.prepare()
print("\t- Done preparing train data!")
# Test partition:
# Test partition:
dataset_test = CleanSeaDataset()
print("\n--- Test configuration ---")
if args.test_db == 'real':
dataset_test.load_data("./CocoFormatDataset", "test_coco")
else:
dataset_test.load_data("./SynthSet", "test_coco")
print("\t- Done loading data")
print("\n--- Test configuration ---")
if args.test_db == 'real':
dataset_test.load_data("./CocoFormatDataset", "test_coco")
else:
dataset_test.load_data("./SynthSet", "test_coco")
print("\t- Done loading data")
dataset_test.prepare()
print("\t- Done preparing test data!")
print("\t- Done preparing test data!")
# # Load and display random samples
# print("Mostrando Imagenes aleatorias...\n")
# image_ids = np.random.choice(dataset_train.image_ids, 4)
# for image_id in image_ids:
# image = dataset_train.load_image(image_id)
# mask, class_ids = dataset_train.load_mask(image_id)
# visualize.display_top_masks(image, mask, class_ids, dataset_train.class_names)
# image_ids = np.random.choice(dataset_train.image_ids, 4)
# for image_id in image_ids:
# image = dataset_train.load_image(image_id)
# mask, class_ids = dataset_train.load_mask(image_id)
# visualize.display_top_masks(image, mask, class_ids, dataset_train.class_names)
# Instantiating a model (new):
print("Initializing train model...\n")
model = modellib.MaskRCNN(mode = "training", config = config, model_dir = MODEL_DIR)
print("\t - Done!")
print("\t - Done!")
# Init weights:
# Init weights:
if args.pretrain == "imagenet":
model.load_weights(model.get_imagenet_weights(), by_name=True)
elif args.pretrain == "coco":
# Load weights trained on MS COCO, but skip layers that are different due to the different number of classes See README for instructions to download the COCO weights
model.load_weights(COCO_WEIGHTS_PATH, by_name=True, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask"])
# Selecting Data Augmentation type.
# Selecting Data Augmentation type.
seq = None
if args.augmentation == 'mild':
seq = data_augmentation.createMildDataAugmentation()
elif args.augmentation == 'severe':
seq = data_augmentation.createSevereDataAugmentation()
# Train the head branches
# Passing layers="heads" freezes all layers except the head
# layers. You can also pass a regular expression to select
# which layers to train by name pattern.
print("Training Heads (first stage)...")
model.train(train_dataset = dataset_train, val_dataset = dataset_test, learning_rate = config.LEARNING_RATE,\
epochs = 5, layers = 'heads', augmentation = seq, validation_bool = args.val_bool)
print("\t - Done!")
print("Training Heads (first stage)...")
model.train(train_dataset = dataset_train, val_dataset = dataset_test, learning_rate = config.LEARNING_RATE,\
epochs = 5, layers = 'heads', augmentation = seq, validation_bool = args.val_bool)
print("\t - Done!")
# Fine tune all layers
# Passing layers="all" trains all layers. You can also
# pass a regular expression to select which layers to
# train by name pattern.
for epoch_break_point in args.epochs:
print("Training network (second stage)...")
model.train(train_dataset = dataset_train, val_dataset = dataset_test, learning_rate = config.LEARNING_RATE / 10,\
epochs = epoch_break_point, layers = "all", augmentation = seq, validation_bool = args.val_bool)
print("Training network (second stage)...")
model.train(train_dataset = dataset_train, val_dataset = dataset_test, learning_rate = config.LEARNING_RATE / 10,\
epochs = epoch_break_point, layers = "all", augmentation = seq, validation_bool = args.val_bool)
# Output name:
MODEL_NAME = "Mask_RCNN_Epoch-{}_Aug-{}_Size-{}_Train-{}_Fill-{}_FillSize-{}_Limit-{}.h5".format(epoch_break_point,\
args.augmentation, args.size_perc, args.train_db, args.fill_db, args.fill_size_perc, args.limit_train)
MODEL_NAME = "Mask_RCNN_Epoch-{}_Aug-{}_Size-{}_Train-{}_Fill-{}_FillSize-{}_Limit-{}.h5".format(epoch_break_point,\
args.augmentation, args.size_perc, args.train_db, args.fill_db, args.fill_size_perc, args.limit_train)
# Save weights
print("\t -Saving weights in {}...\n".format(os.path.join(MODEL_DIR, MODEL_NAME)))
print("\t -Saving weights in {}...\n".format(os.path.join(MODEL_DIR, MODEL_NAME)))
model_path = os.path.join(MODEL_DIR, MODEL_NAME)
model.keras_model.save_weights(model_path)
print("\t - Done!")
return
""" Inference process """
def inference_process(args):
physical_devices = tf.config.list_physical_devices('GPU')
os.environ["CUDA_VISIBLE_DEVICES"]="0"
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
# Test partition:
dataset_test = CleanSeaDataset()
print("\n--- Test configuration ---")
if args.test_db == 'real':
dataset_test.load_data("./CocoFormatDataset", "test_coco")
else:
dataset_test.load_data("./SynthSet", "test_coco")
print("\t- Done loading data")
dataset_test.prepare()
print("\t- Done preparing test data!")
# Loading inference configuration for the RCNN model:
inference_config = InferenceConfig()
# Recreate the model in inference mode:
ROOT_DIR = './'
MODEL_DIR = os.path.join(ROOT_DIR, "Models")
# Creating the RCNN neural model:
# Recreate the model in inference mode:
ROOT_DIR = './'
MODEL_DIR = os.path.join(ROOT_DIR, "Models")
# Creating the RCNN neural model:
model = modellib.MaskRCNN(mode = "inference", config = inference_config, model_dir = MODEL_DIR)
for epoch_break_point in args.epochs:
# Retrieving model name:
MODEL_NAME = "Mask_RCNN_Epoch-{}_Aug-{}_Size-{}_Train-{}_Fill-{}_FillSize-{}_Limit-{}.h5".format(epoch_break_point,\
args.augmentation, args.size_perc, args.train_db, args.fill_db, args.fill_size_perc, args.limit_train)
# Get path to saved weights
model_path = os.path.join(MODEL_DIR, MODEL_NAME)
# Load trained weights
print("Loading weights from {}...".format(model_path))
print("Loading weights from {}...".format(model_path))
model.load_weights(model_path, by_name=True)
print("\t - Done!")
print("\t - Done!")
# Iterating through the different test images:
APs_025_instance = list()
APs_05_instance = list()
APs_075_instance = list()
AP_ranges_instance = list()
IoUs_instance = list()
APs_05_material = list()
APs_075_material = list()
APs_025_material = list()
IoUs_material = list()
AP_ranges_material = list()
for image_id in dataset_test.image_ids:
# Iterating through the different test images:
APs_025_instance = list()
APs_05_instance = list()
APs_075_instance = list()
AP_ranges_instance = list()
IoUs_instance = list()
APs_05_material = list()
APs_075_material = list()
APs_025_material = list()
IoUs_material = list()
AP_ranges_material = list()
for image_id in dataset_test.image_ids:
# Load image and ground truth data
image, image_meta, gt_class_id, gt_bbox, gt_mask =\
modellib.load_image_gt(dataset_test, inference_config, image_id)
# Run object detection
results = model.detect([image], verbose=0)
r = results[0]
#### /INSTANCE-LEVEL EVALUATION\ ###
# Compute AP
# th = 0.5
AP_05, precisions, recalls, overlap = utils.compute_ap(gt_bbox, gt_class_id, gt_mask, r["rois"], r["class_ids"], r["scores"], r['masks'], 0.5)
APs_05_instance.append(AP_05)
# th = 0.75
AP_075, precisions, recalls, overlap = utils.compute_ap(gt_bbox, gt_class_id, gt_mask, r["rois"], r["class_ids"], r["scores"], r['masks'], 0.75)
APs_075_instance.append(AP_075)
# th = 0.25
AP_025, precisions, recalls, overlap = utils.compute_ap(gt_bbox, gt_class_id, gt_mask, r["rois"], r["class_ids"], r["scores"], r['masks'], 0.25)
APs_025_instance.append(AP_025)
# AVG Intersection over Union:
IoUs_instance.append(np.average(overlap))
# COCO range
AP_range = utils.compute_ap_range(gt_box = gt_bbox, gt_class_id = gt_class_id, gt_mask = gt_mask,\
pred_box = r["rois"], pred_class_id = r["class_ids"], pred_score = r["scores"], pred_mask = r['masks'],\
iou_thresholds = None, verbose = 0)
AP_ranges_instance.append(AP_range)
#### \INSTANCE-LEVEL EVALUATION/ ###
#### /MATERIAL-LEVEL EVALUATION\ ###
# Grouping classes:
gt_class_id_material = np.array([mapping_dictionary[str(u)] for u in gt_class_id], dtype=np.int32)
class_ids_material = np.array([mapping_dictionary[str(u)] for u in r["class_ids"]],dtype=np.int32)
# Compute AP
# th = 0.5
AP_05, precisions, recalls, overlap = utils.compute_ap(gt_bbox, gt_class_id_material, gt_mask, r["rois"], class_ids_material, r["scores"], r['masks'], 0.5)
APs_05_material.append(AP_05)
# th = 0.75
AP_075, precisions, recalls, overlap = utils.compute_ap(gt_bbox, gt_class_id_material, gt_mask, r["rois"], class_ids_material, r["scores"], r['masks'], 0.75)
APs_075_material.append(AP_075)
# th = 0.25
AP_025, precisions, recalls, overlap = utils.compute_ap(gt_bbox, gt_class_id_material, gt_mask, r["rois"], class_ids_material, r["scores"], r['masks'], 0.25)
APs_025_material.append(AP_025)
# AVG Intersection over Union:
IoUs_material.append(np.average(overlap))
# COCO range
AP_range = utils.compute_ap_range(gt_box = gt_bbox, gt_class_id = gt_class_id_material, gt_mask = gt_mask,\
pred_box = r["rois"], pred_class_id = class_ids_material, pred_score = r["scores"], pred_mask = r['masks'],\
iou_thresholds = None, verbose = 0)
AP_ranges_material.append(AP_range)
#### \MATERIAL-LEVEL EVALUATION/ ###
print("--- Results --- ")
print(" - Instance - ")
print("\t - IoU ({}): {:.2f}".format(MODEL_NAME, np.nanmean(IoUs_instance)))
print("\t - mAP-Range ({}): {:.2f}%".format(MODEL_NAME, 100*np.mean(AP_ranges_instance)))
print("\t - mAP-0.25 ({}): {:.2f}%".format(MODEL_NAME, 100*np.mean(APs_025_instance)))
print("\t - mAP-0.5 ({}): {:.2f}%".format(MODEL_NAME, 100*np.mean(APs_05_instance)))
print("\t - mAP-0.75 ({}): {:.2f}%".format(MODEL_NAME, 100*np.mean(APs_075_instance)))
print(" - Material - ")
print("\t - IoU ({}): {:.2f}".format(MODEL_NAME, np.nanmean(IoUs_material)))
print("\t - mAP-Range ({}): {:.2f}%".format(MODEL_NAME, 100*np.mean(AP_ranges_material)))
print("\t - mAP-0.25 ({}): {:.2f}%".format(MODEL_NAME, 100*np.mean(APs_025_material)))
print("\t - mAP-0.5 ({}): {:.2f}%".format(MODEL_NAME, 100*np.mean(APs_05_material)))
print("\t - mAP-0.75 ({}): {:.2f}%".format(MODEL_NAME, 100*np.mean(APs_075_material)))
return
if __name__ == '__main__':
# Parameters:
args = argument_parsing.menu()
if args.process == 'train':
# Performing the training:
train_process(args)
elif args.process == 'inference':
# Inference stage:
inference_process(args)
else:
# Performing both train and inference:
### Train phase:
train_process(args)
### Inference phase:
inference_process(args)