-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathAADExpr.h
1135 lines (962 loc) · 24.5 KB
/
AADExpr.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Written by Antoine Savine in 2018
This code is the strict IP of Antoine Savine
License to use and alter this code for personal and commercial applications
is freely granted to any person or company who purchased a copy of the book
Modern Computational Finance: AAD and Parallel Simulations
Antoine Savine
Wiley, 2018
As long as this comment is preserved at the top of the file
*/
#pragma once
// Implementation of AAD with expression templates
// (AADET, chapter 15)
// Defines expressions and the Number type
#include <algorithm>
#include "AADTape.h"
// Base CRTP expression class
// Note: overloaded operators catch all expressions and nothing else
template <class E>
struct Expression
{
// CRTP "virtualization"
double value() const
{
return static_cast<const E*>(this)->value();
}
// Just another interface
explicit operator double() const
{
return value();
}
};
// Note that Number is a leaf expression
// Defined in the bottom of the file
// Binary expression
// LHS : the expression on the left
// RHS : the expression on the right
// OP : the binary operator
template <class LHS, class RHS, class OP>
class BinaryExpression
// CRTP
: public Expression<BinaryExpression<LHS, RHS, OP>>
{
const double myValue;
const LHS lhs;
const RHS rhs;
public:
// Constructor out of 2 expressions
// Note: eager evaluation on construction
explicit BinaryExpression(
const Expression<LHS>& l,
const Expression<RHS>& r)
: myValue(OP::eval(l.value(), r.value())),
lhs(static_cast<const LHS&>(l)),
rhs(static_cast<const RHS&>(r))
{}
// Value accessors
double value() const { return myValue; }
// Expression template magic
// Expressions know
// AT COMPILE TIME
// the number of active inputs in their sub-expressions
enum { numNumbers = LHS::numNumbers + RHS::numNumbers };
// Push adjoint down the expression
// N : total number of active inputs in the expression
// n : number of active inputs already processed
template <size_t N, size_t n>
void pushAdjoint(
// Node for the complete expression being processed
Node& exprNode,
// Adjoint cumulated for this binary node, or 1 if top
const double adjoint)
const
{
// Push on the left
if (LHS::numNumbers > 0)
{
lhs.pushAdjoint<N, n>(
exprNode,
adjoint * OP::leftDerivative(lhs.value(), rhs.value(), value()));
}
// Push on the right
if (RHS::numNumbers > 0)
{
// Note left push processed LHS::numNumbers numbers
// So the next number to be processed is n + LHS::numNumbers
rhs.pushAdjoint<N, n + LHS::numNumbers>(
exprNode,
adjoint * OP::rightDerivative(lhs.value(), rhs.value(), value()));
}
}
};
// "Concrete" binaries, we only need to define operations and derivatives
struct OPMult
{
static const double eval(const double l, const double r)
{
return l * r;
}
static const double leftDerivative
(const double l, const double r, const double v)
{
return r;
}
static const double rightDerivative
(const double l, const double r, const double v)
{
return l;
}
};
struct OPAdd
{
static const double eval(const double l, const double r)
{
return l + r;
}
static const double leftDerivative
(const double l, const double r, const double v)
{
return 1.0;
}
static const double rightDerivative
(const double l, const double r, const double v)
{
return 1.0;
}
};
struct OPSub
{
static const double eval(const double l, const double r)
{
return l - r;
}
static const double leftDerivative
(const double l, const double r, const double v)
{
return 1.0;
}
static const double rightDerivative
(const double l, const double r, const double v)
{
return -1.0;
}
};
struct OPDiv
{
static const double eval(const double l, const double r)
{
return l / r;
}
static const double leftDerivative
(const double l, const double r, const double v)
{
return 1.0 / r;
}
static const double rightDerivative
(const double l, const double r, const double v)
{
return -l / r / r;
}
};
struct OPPow
{
static const double eval(const double l, const double r)
{
return pow(l, r);
}
static const double leftDerivative
(const double l, const double r, const double v)
{
return r*v / l;
}
static const double rightDerivative
(const double l, const double r, const double v)
{
return log(l)*v;
}
};
struct OPMax
{
static const double eval(const double l, const double r)
{
return max(l, r);
}
static const double leftDerivative
(const double l, const double r, const double v)
{
return l > r ? 1.0 : 0.0;
}
static const double rightDerivative
(const double l, const double r, const double v)
{
return r > l? 1.0 : 0.0;
}
};
struct OPMin
{
static const double eval(const double l, const double r)
{
return min(l, r);
}
static const double leftDerivative
(const double l, const double r, const double v)
{
return l < r ? 1.0 : 0.0;
}
static const double rightDerivative
(const double l, const double r, const double v)
{
return r < l ? 1.0 : 0.0;
}
};
// Operator overloading for binary expressions
// build the corresponding expressions
template <class LHS, class RHS>
BinaryExpression<LHS, RHS, OPMult> operator*(
const Expression<LHS>& lhs, const Expression<RHS>& rhs)
{
return BinaryExpression<LHS, RHS, OPMult>(lhs, rhs);
}
template <class LHS, class RHS>
BinaryExpression<LHS, RHS, OPAdd> operator+(
const Expression<LHS>& lhs, const Expression<RHS>& rhs)
{
return BinaryExpression<LHS, RHS, OPAdd>(lhs, rhs);
}
template <class LHS, class RHS>
BinaryExpression<LHS, RHS, OPSub> operator-(
const Expression<LHS>& lhs, const Expression<RHS>& rhs)
{
return BinaryExpression<LHS, RHS, OPSub>(lhs, rhs);
}
template <class LHS, class RHS>
BinaryExpression<LHS, RHS, OPDiv> operator/(
const Expression<LHS>& lhs, const Expression<RHS>& rhs)
{
return BinaryExpression<LHS, RHS, OPDiv>(lhs, rhs);
}
template <class LHS, class RHS>
BinaryExpression<LHS, RHS, OPPow> pow(
const Expression<LHS>& lhs, const Expression<RHS>& rhs)
{
return BinaryExpression<LHS, RHS, OPPow>(lhs, rhs);
}
template <class LHS, class RHS>
BinaryExpression<LHS, RHS, OPMax> max(
const Expression<LHS>& lhs, const Expression<RHS>& rhs)
{
return BinaryExpression<LHS, RHS, OPMax>(lhs, rhs);
}
template <class LHS, class RHS>
BinaryExpression<LHS, RHS, OPMin> min(
const Expression<LHS>& lhs, const Expression<RHS>& rhs)
{
return BinaryExpression<LHS, RHS, OPMin>(lhs, rhs);
}
// Unary expressions : Same logic with one argument
// The CRTP class
template <class ARG, class OP>
class UnaryExpression
// CRTP
: public Expression<UnaryExpression<ARG, OP>>
{
const double myValue;
const ARG arg;
// For binary operators with a double on one side
// we store the double
const double dArg = 0.0;
public:
// Constructor
// Note : eager evaluation on construction
explicit UnaryExpression(
const Expression<ARG>& a)
: myValue(OP::eval(a.value(), 0.0)), arg(static_cast<const ARG&>(a)) {}
// Special constructor for binary expressions with a double on one side
explicit UnaryExpression(
const Expression<ARG>& a,
const double b)
: myValue(OP::eval(a.value(), b)), arg(static_cast<const ARG&>(a)), dArg(b) {}
// Value accessors
double value() const { return myValue; }
// Expression template magic
enum { numNumbers = ARG::numNumbers };
// Push adjoint down the expression
template <size_t N, size_t n>
void pushAdjoint(
// Node for the complete expression being processed
Node& exprNode,
// Adjoint cumulated on the node, 1 if top
const double adjoint)
const
{
// Push into argument
if (ARG::numNumbers > 0)
{
arg.pushAdjoint<N, n>(
exprNode,
adjoint * OP::derivative(arg.value(), value(), dArg));
}
}
};
// The unary operators
struct OPExp
{
static const double eval(const double r, const double d)
{
return exp(r);
}
static const double derivative
(const double r, const double v, const double d)
{
return v;
}
};
struct OPLog
{
static const double eval(const double r, const double d)
{
return log(r);
}
static const double derivative
(const double r, const double v, const double d)
{
return 1.0 / r;
}
};
struct OPSqrt
{
static const double eval(const double r, const double d)
{
return sqrt(r);
}
static const double derivative
(const double r, const double v, const double d)
{
return 0.5 / v;
}
};
struct OPFabs
{
static const double eval(const double r, const double d)
{
return fabs(r);
}
static const double derivative
(const double r, const double v, const double d)
{
return r > 0.0 ? 1.0 : -1.0;
}
};
struct OPNormalDens
{
static const double eval(const double r, const double d)
{
return normalDens(r);
}
static const double derivative
(const double r, const double v, const double d)
{
return - r * v;
}
};
struct OPNormalCdf
{
static const double eval(const double r, const double d)
{
return normalCdf(r);
}
static const double derivative
(const double r, const double v, const double d)
{
return normalDens(r);
}
};
// Binary operators with a double on one side
// * double or double *
struct OPMultD
{
static const double eval(const double r, const double d)
{
return r * d;
}
static const double derivative
(const double r, const double v, const double d)
{
return d;
}
};
// + double or double +
struct OPAddD
{
static const double eval(const double r, const double d)
{
return r + d;
}
static const double derivative
(const double r, const double v, const double d)
{
return 1.0;
}
};
// double -
struct OPSubDL
{
static const double eval(const double r, const double d)
{
return d - r;
}
static const double derivative
(const double r, const double v, const double d)
{
return -1.0;
}
};
// - double
struct OPSubDR
{
static const double eval(const double r, const double d)
{
return r - d;
}
static const double derivative
(const double r, const double v, const double d)
{
return 1.0;
}
};
// double /
struct OPDivDL
{
static const double eval(const double r, const double d)
{
return d / r;
}
static const double derivative
(const double r, const double v, const double d)
{
return -d / r / r;
}
};
// / double
struct OPDivDR
{
static const double eval(const double r, const double d)
{
return r / d;
}
static const double derivative
(const double r, const double v, const double d)
{
return 1.0 / d;
}
};
// pow (d,)
struct OPPowDL
{
static const double eval(const double r, const double d)
{
return pow(d, r);
}
static const double derivative
(const double r, const double v, const double d)
{
return log(d) * v;
}
};
// pow (,d)
struct OPPowDR
{
static const double eval(const double r, const double d)
{
return pow(r, d);
}
static const double derivative
(const double r, const double v, const double d)
{
return d * v / r;
}
};
// max (d,)
struct OPMaxD
{
static const double eval(const double r, const double d)
{
return max(r, d);
}
static const double derivative
(const double r, const double v, const double d)
{
return r > d ? 1.0 : 0.0;
}
};
// min (d,)
struct OPMinD
{
static const double eval(const double r, const double d)
{
return min(r, d);
}
static const double derivative
(const double r, const double v, const double d)
{
return r < d ? 1.0 : 0.0;
}
};
// And overloading
template <class ARG>
UnaryExpression<ARG, OPExp> exp(const Expression<ARG>& arg)
{
return UnaryExpression<ARG, OPExp>(arg);
}
template <class ARG>
UnaryExpression<ARG, OPLog> log(const Expression<ARG>& arg)
{
return UnaryExpression<ARG, OPLog>(arg);
}
template <class ARG>
UnaryExpression<ARG, OPSqrt> sqrt(const Expression<ARG>& arg)
{
return UnaryExpression<ARG, OPSqrt>(arg);
}
template <class ARG>
UnaryExpression<ARG, OPFabs> fabs(const Expression<ARG>& arg)
{
return UnaryExpression<ARG, OPFabs>(arg);
}
template <class ARG>
UnaryExpression<ARG, OPNormalDens> normalDens(const Expression<ARG>& arg)
{
return UnaryExpression<ARG, OPNormalDens>(arg);
}
template <class ARG>
UnaryExpression<ARG, OPNormalCdf> normalCdf(const Expression<ARG>& arg)
{
return UnaryExpression<ARG, OPNormalCdf>(arg);
}
// Overloading continued,
// binary operators with a double on one side
template <class ARG>
UnaryExpression<ARG, OPMultD> operator*(
const double d, const Expression<ARG>& rhs)
{
return UnaryExpression<ARG, OPMultD>(rhs, d);
}
template <class ARG>
UnaryExpression<ARG, OPMultD> operator*(
const Expression<ARG>& lhs, const double d)
{
return UnaryExpression<ARG, OPMultD>(lhs, d);
}
template <class ARG>
UnaryExpression<ARG, OPAddD> operator+(
const double d, const Expression<ARG>& rhs)
{
return UnaryExpression<ARG, OPAddD>(rhs, d);
}
template <class ARG>
UnaryExpression<ARG, OPAddD> operator+(
const Expression<ARG>& lhs, const double d)
{
return UnaryExpression<ARG, OPAddD>(lhs, d);
}
template <class ARG>
UnaryExpression<ARG, OPSubDL> operator-(
const double d, const Expression<ARG>& rhs)
{
return UnaryExpression<ARG, OPSubDL>(rhs, d);
}
template <class ARG>
UnaryExpression<ARG, OPSubDR> operator-(
const Expression<ARG>& lhs, const double d)
{
return UnaryExpression<ARG, OPSubDR>(lhs, d);
}
template <class ARG>
UnaryExpression<ARG, OPDivDL> operator/(
const double d, const Expression<ARG>& rhs)
{
return UnaryExpression<ARG, OPDivDL>(rhs, d);
}
template <class ARG>
UnaryExpression<ARG, OPDivDR> operator/(
const Expression<ARG>& lhs, const double d)
{
return UnaryExpression<ARG, OPDivDR>(lhs, d);
}
template <class ARG>
UnaryExpression<ARG, OPPowDL> pow(
const double d, const Expression<ARG>& rhs)
{
return UnaryExpression<ARG, OPPowDL>(rhs, d);
}
template <class ARG>
UnaryExpression<ARG, OPPowDR> pow(
const Expression<ARG>& lhs, const double d)
{
return UnaryExpression<ARG, OPPowDR>(lhs, d);
}
template <class ARG>
UnaryExpression<ARG, OPMaxD> max(
const double d, const Expression<ARG>& rhs)
{
return UnaryExpression<ARG, OPMaxD>(rhs, d);
}
template <class ARG>
UnaryExpression<ARG, OPMaxD> max(
const Expression<ARG>& lhs, const double d)
{
return UnaryExpression<ARG, OPMaxD>(lhs, d);
}
template <class ARG>
UnaryExpression<ARG, OPMinD> min(
const double d, const Expression<ARG>& rhs)
{
return UnaryExpression<ARG, OPMinD>(rhs, d);
}
template <class ARG>
UnaryExpression<ARG, OPMinD> min(
const Expression<ARG>& lhs, const double d)
{
return UnaryExpression<ARG, OPMinD>(lhs, d);
}
// Comparison, same as traditional
template<class E, class F>
bool operator==(const Expression<E>& lhs, const Expression<F>& rhs)
{
return lhs.value() == rhs.value();
}
template<class E>
bool operator==(const Expression<E>& lhs, const double& rhs)
{
return lhs.value() == rhs;
}
template<class E>
bool operator==(const double& lhs, const Expression<E>& rhs)
{
return lhs == rhs.value();
}
template<class E, class F>
bool operator!=(const Expression<E>& lhs, const Expression<F>& rhs)
{
return lhs.value() != rhs.value();
}
template<class E>
bool operator!=(const Expression<E>& lhs, const double& rhs)
{
return lhs.value() != rhs;
}
template<class E>
bool operator!=(const double& lhs, const Expression<E>& rhs)
{
return lhs != rhs.value();
}
template<class E, class F>
bool operator<(const Expression<E>& lhs, const Expression<F>& rhs)
{
return lhs.value() < rhs.value();
}
template<class E>
bool operator<(const Expression<E>& lhs, const double& rhs)
{
return lhs.value() < rhs;
}
template<class E>
bool operator<(const double& lhs, const Expression<E>& rhs)
{
return lhs < rhs.value();
}
template<class E, class F>
bool operator>(const Expression<E>& lhs, const Expression<F>& rhs)
{
return lhs.value() > rhs.value();
}
template<class E>
bool operator>(const Expression<E>& lhs, const double& rhs)
{
return lhs.value() > rhs;
}
template<class E>
bool operator>(const double& lhs, const Expression<E>& rhs)
{
return lhs > rhs.value();
}
template<class E, class F>
bool operator<=(const Expression<E>& lhs, const Expression<F>& rhs)
{
return lhs.value() <= rhs.value();
}
template<class E>
bool operator<=(const Expression<E>& lhs, const double& rhs)
{
return lhs.value() <= rhs;
}
template<class E>
bool operator<=(const double& lhs, const Expression<E>& rhs)
{
return lhs <= rhs.value();
}
template<class E, class F>
bool operator>=(const Expression<E>& lhs, const Expression<F>& rhs)
{
return lhs.value() >= rhs.value();
}
template<class E>
bool operator>=(const Expression<E>& lhs, const double& rhs)
{
return lhs.value() >= rhs;
}
template<class E>
bool operator>=(const double& lhs, const Expression<E>& rhs)
{
return lhs >= rhs.value();
}
// Finally, unary +/- operators
template <class RHS>
UnaryExpression<RHS, OPSubDL> operator-
(const Expression<RHS>& rhs)
{
return 0.0 - rhs;
}
template <class RHS>
Expression<RHS> operator+
(const Expression<RHS>& rhs)
{
return rhs;
}
// The Number type, also an expression
class Number : public Expression<Number>
{
// The value and node for this number, same as traditional
double myValue;
Node* myNode;
// Node creation on tape
template <size_t N>
Node* createMultiNode()
{
return tape->recordNode<N>();
}
// Flattening:
// This is where, on assignment or construction from an expression,
// that derivatives are pushed through the expression's DAG
template<class E>
void fromExpr(
// RHS expression, will be flattened into this Number
const Expression<E>& e)
{
// Build expression node on tape
auto* node = createMultiNode<E::numNumbers>();
// Push adjoints through expression with adjoint = 1 on top
static_cast<const E&>(e).pushAdjoint<E::numNumbers, 0>(*node, 1.0);
// Set my node
myNode = node;
}
public:
// Expression template magic
enum { numNumbers = 1 };
// Push adjoint
// Numbers are expression leaves,
// pushAdjoint() receives their adjoint in the expression
// Numbers don't "push" anything, they register their derivatives on tape
template <size_t N, size_t n>
void pushAdjoint(
// Node for the complete expression
Node& exprNode,
// Adjoint accumulated for this number, in the expression
const double adjoint)
const
{
// adjoint = d (expression) / d (thisNumber) : register on tape
// note n: index of this number on the node on tape
// Register adjoint
exprNode.pAdjPtrs[n] = Tape::multi? myNode->pAdjoints : &myNode->mAdjoint;
// Register derivative
exprNode.pDerivatives[n] = adjoint;
}
// Static access to tape, same as traditional
static thread_local Tape* tape;
// Constructors
Number() {}
explicit Number(const double val) : myValue(val)
{
// Create leaf
myNode = createMultiNode<0>();
}
Number& operator=(const double val)
{
myValue = val;
// Create leaf
myNode = createMultiNode<0>();
return *this;
}
// No need for copy and assignment
// Default ones do the right thing:
// copy value and pointer to node on tape
// Construct or assign from expression
template <class E>
Number(const Expression<E>& e) : myValue(e.value())
{
// Flatten RHS expression
fromExpr<E>(static_cast<const E&>(e));
}
template <class E>
Number& operator=
(const Expression<E>& e)
{
myValue = e.value();
// Flatten RHS expression
fromExpr<E>(static_cast<const E&>(e));
return *this;
}
// Explicit coversion to double
explicit operator double& () { return myValue; }
explicit operator double () const { return myValue; }
// All the normal accessors and propagators, same as traditional
// Put on tape
void putOnTape()
{
myNode = createMultiNode<0>();
}
// Accessors: value and adjoint
double& value()
{
return myValue;
}
double value() const
{
return myValue;
}
// Single dimensional
double& adjoint()
{
return myNode->adjoint();
}
double adjoint() const
{
return myNode->adjoint();
}
// Multi dimensional
double& adjoint(const size_t n)
{
return myNode->adjoint(n);
}
double adjoint(const size_t n) const
{
return myNode->adjoint(n);
}