ResNet-152 with Squeeze-and-Excitation blocks
Metric | Value |
---|---|
Type | Classification |
GFLOPs | 22.709 |
MParams | 66.746 |
Source framework | Caffe* |
Metric | Value |
---|---|
Top 1 | 78.506% |
Top 5 | 94.45% |
Image, name - data
, shape - 1,3,224,224
, format is B,C,H,W
where:
B
- batch sizeC
- channelH
- heightW
- width
Channel order is BGR
.
Mean values - [104.0,117.0,123.0].
Image, name - data
, shape - 1,3,224,224
, format is B,C,H,W
where:
B
- batch sizeC
- channelH
- heightW
- width
Channel order is BGR
Object classifier according to ImageNet classes, name - prob
, shape - 1,1000
, output data format is B,C
where:
B
- batch sizeC
- Predicted probabilities for each class in [0, 1] range
Object classifier according to ImageNet classes, name - prob
, shape - 1,1000
, output data format is B,C
where:
B
- batch sizeC
- Predicted probabilities for each class in [0, 1] range
The original model is distributed under the Apache License, Version 2.0. A copy of the license is provided in APACHE-2.0-SENet.txt.