Skip to content

Latest commit

 

History

History
85 lines (58 loc) · 3.16 KB

rfcn-resnet101-coco-tf.md

File metadata and controls

85 lines (58 loc) · 3.16 KB

rfcn-resnet101-coco-tf

Use Case and High-Level Description

R-FCN Resnet-101 model, pretrained on COCO* dataset. Used for object detection. For details, see the paper.

Example

Specification

Metric Value
Type Object detection
GFlops 53.462
MParams 171.85
Source framework TensorFlow*

Accuracy

Metric Value
coco_precision 28.40%
mAP 45.02%

Performance

Input

Original Model

Image, name: image_tensor, shape: [1x600x600x3], format: [BxHxWxC], where:

- B - batch size
- H - image height
- W - image width
- C - number of channels

Expected color order: RGB.

Converted Model

  1. Image, name: image_tensor, shape: [1x3x600x600], format: [BxCxHxW], where:

    • B - batch size
    • C - number of channels
    • H - image height
    • W - image width

Expected color order: BGR.

  1. Information of input image size, name: image_info, shape: [1x3], format: [BxC], where:

    • B - batch size
    • C - vector of 3 values in format [H,W,S], where H is an image height, W is an image width, S is an image scale factor (usually 1)

Output

Original Model

  1. Classifier, name: detection_classes. Contains predicted bounding boxes classes in a range [1, 91]. The model was trained on the Microsoft* COCO dataset version with 90 categories of objects.
  2. Probability, name: detection_scores. Contains probability of detected bounding boxes.
  3. Detection box, name: detection_boxes. Contains detection boxes coordinates in a format [y_min, x_min, y_max, x_max], where (x_min, y_min) are coordinates of the top left corner, (x_max, y_max) are coordinates of the right bottom corner. Coordinates are rescaled to input image size.
  4. Detections number, name: num_detections. Contains the number of predicted detection boxes.

Converted Model

The array of summary detection information, name: detection_output, shape: [1, 1, N, 7], where N is the number of detected bounding boxes. For each detection, the description has the format: [image_id, label, conf, x_min, y_min, x_max, y_max], where:

- `image_id` - ID of the image in the batch
- `label` - predicted class ID
- `conf` - confidence for the predicted class
- (`x_min`, `y_min`) - coordinates of the top left bounding box corner (coordinates stored in normalized format, in range [0, 1])
- (`x_max`, `y_max`) - coordinates of the bottom right bounding box corner  (coordinates stored in normalized format, in range [0, 1])

Legal Information

The original model is distributed under the Apache License, Version 2.0. A copy of the license is provided in APACHE-2.0-TensorFlow.txt.